--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b_v2 tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false push_dataset_to_hub: datasets: - path: vicgalle/alpaca-gpt4 type: alpaca dataset_prepared_path: val_set_size: 0.02 adapter: lora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.0 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/lora-out gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# outputs/lora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.1997 | 0.0002 | 1 | 1.3698 | | 1.1468 | 0.25 | 1404 | 1.1159 | | 1.2207 | 0.5 | 2808 | 1.1072 | | 0.9448 | 0.75 | 4212 | 1.0982 | | 1.0709 | 1.0 | 5616 | 1.0931 | | 0.9592 | 1.2498 | 7020 | 1.1051 | | 1.1133 | 1.4998 | 8424 | 1.1058 | | 0.884 | 1.7498 | 9828 | 1.1018 | | 0.9117 | 1.9998 | 11232 | 1.0963 | | 0.9594 | 2.2496 | 12636 | 1.1336 | | 0.9034 | 2.4996 | 14040 | 1.1338 | | 0.6645 | 2.7496 | 15444 | 1.1326 | | 0.8913 | 2.9996 | 16848 | 1.1309 | | 0.9476 | 3.2495 | 18252 | 1.1752 | | 0.9015 | 3.4995 | 19656 | 1.1762 | | 0.6284 | 3.7495 | 21060 | 1.1768 | | 0.7522 | 3.9995 | 22464 | 1.1770 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3