File size: 49,422 Bytes
8940e5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Revision stage: Edit the output to correct content unsupported
by evidence while preserving the original content as much as possible. Initialize
the revised text $y=x$.
(1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y,
q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with the current
revised text $y$.
(2) Only if a disagreement is detect, the edit model (via few-shot prompting +
CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of $y$ that aims to
agree with evidence $e_{ij}$ while otherwise minimally altering $y$.
(3) Finally only a limited number $M=5$ of evidence goes into the attribution
report $A$.
Fig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision).
(Image source: Gao et al. 2022)
When evaluating the revised text $y$, both attribution and preservation metrics
matter.'
sentences:
- What is the impact of claim extraction on the efficiency of query generation within
various tool querying methodologies?
- What are the implications of integrating both attribution and preservation metrics
in the assessment of a revised text for an attribution report?
- What impact does the calibration of large language models, as discussed in the
research by Kadavath et al. (2022), have on the consistency and accuracy of their
responses, particularly in the context of multiple choice questions?
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
on how likely the model outputs correct answers. (Image source: Gekhman et al.
2024)
Some interesting observations of the experiments, where dev set accuracy is considered
a proxy for hallucinations.
Unknown examples are fitted substantially slower than Known.
The best dev performance is obtained when the LLM fits the majority of the Known
training examples but only a few of the Unknown ones. The model starts to hallucinate
when it learns most of the Unknown examples.
Among Known examples, MaybeKnown cases result in better overall performance, more
essential than HighlyKnown ones.'
sentences:
- What are the implications of a language model's performance when it is primarily
trained on familiar examples compared to a diverse set of unfamiliar examples,
and how does this relate to the phenomenon of hallucinations in language models?
- How can the insights gained from the evaluation framework inform the future enhancements
of AI models, particularly in terms of improving factual accuracy and entity recognition?
- What role does the MPNet model play in evaluating the faithfulness of reasoning
paths, particularly in relation to scores of entailment and contradiction?
- source_sentence: 'Non-context LLM: Prompt LLM directly with <atomic-fact> True or
False? without additional context.
Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source
as context.
Nonparametric probability (NP)): Compute the average likelihood of tokens in the
atomic fact by a masked LM and use that to make a prediction.
Retrieval→LLM + NP: Ensemble of two methods.
Some interesting observations on model hallucination behavior:
Error rates are higher for rarer entities in the task of biography generation.
Error rates are higher for facts mentioned later in the generation.
Using retrieval to ground the model generation significantly helps reduce hallucination.'
sentences:
- What methods does the model employ to generate impactful, non-standard verification
questions that enhance the fact-checking process?
- What impact does the timing of fact presentation in AI outputs have on the likelihood
of generating inaccuracies?
- What are the benefits of using the 'Factor+revise' strategy in enhancing the reliability
of verification processes in few-shot learning, particularly when it comes to
identifying inconsistencies?
- source_sentence: 'Research stage: Find related documents as evidence.
(1) First use a query generation model (via few-shot prompting, $x \to {q_1, \dots,
q_N}$) to construct a set of search queries ${q_1, \dots, q_N}$ to verify all
aspects of each sentence.
(2) Run Google search, $K=5$ results per query $q_i$.
(3) Utilize a pretrained query-document relevance model to assign relevance scores
and only retain one most relevant $J=1$ document $e_{i1}, \dots, e_{iJ}$ per query
$q_i$.
Revision stage: Edit the output to correct content unsupported by evidence while
preserving the original content as much as possible. Initialize the revised text
$y=x$.'
sentences:
- In what ways does the process of generating queries facilitate the verification
of content accuracy, particularly through the lens of evidence-based editing methodologies?
- What role do attribution and preservation metrics play in assessing the quality
of revised texts, and how might these factors influence the success of the Evidence
Disagreement Detection process?
- What are the practical ways to utilize the F1 @ K metric for assessing how well
FacTool identifies factual inaccuracies in various fields?
- source_sentence: '(1) Joint: join with step 2, where the few-shot examples are structured
as (response, verification questions, verification answers); The drawback is that
the original response is in the context, so the model may repeat similar hallucination.
(2) 2-step: separate the verification planning and execution steps, such as the
original response doesn’t impact
(3) Factored: each verification question is answered separately. Say, if a long-form
base generation results in multiple verification questions, we would answer each
question one-by-one.
(4) Factor+revise: adding a “cross-checking” step after factored verification
execution, conditioned on both the baseline response and the verification question
and answer. It detects inconsistency.
Final output: Generate the final, refined output. The output gets revised at this
step if any inconsistency is discovered.'
sentences:
- What are the key challenges associated with using a pre-training dataset for world
knowledge, particularly in maintaining the factual accuracy of the outputs generated
by the model?
- What obstacles arise when depending on the pre-training dataset in the context
of extrinsic hallucination affecting model outputs?
- In what ways does the 'Factor+revise' method enhance the reliability of responses
when compared to the 'Joint' and '2-step' methods used for cross-checking?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8802083333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.984375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9947916666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8802083333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.328125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19895833333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8802083333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.984375
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9947916666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9495062223081544
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9337673611111109
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.934240845959596
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8854166666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.984375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9947916666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8854166666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.328125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19895833333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8854166666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.984375
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9947916666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9536782535355709
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.937818287037037
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.937818287037037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9010416666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.984375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9010416666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.328125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9010416666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.984375
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9587563670488631
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9446180555555554
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9446180555555556
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.90625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.984375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.90625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.328125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.90625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.984375
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9609068566179642
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9474826388888888
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.947482638888889
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.890625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.984375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.890625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.328125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.890625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.984375
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9551401340175182
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9396701388888888
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.939670138888889
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1000")
# Run inference
sentences = [
'(1) Joint: join with step 2, where the few-shot examples are structured as (response, verification questions, verification answers); The drawback is that the original response is in the context, so the model may repeat similar hallucination.\n(2) 2-step: separate the verification planning and execution steps, such as the original response doesn’t impact\n(3) Factored: each verification question is answered separately. Say, if a long-form base generation results in multiple verification questions, we would answer each question one-by-one.\n(4) Factor+revise: adding a “cross-checking” step after factored verification execution, conditioned on both the baseline response and the verification question and answer. It detects inconsistency.\n\n\nFinal output: Generate the final, refined output. The output gets revised at this step if any inconsistency is discovered.',
"In what ways does the 'Factor+revise' method enhance the reliability of responses when compared to the 'Joint' and '2-step' methods used for cross-checking?",
'What obstacles arise when depending on the pre-training dataset in the context of extrinsic hallucination affecting model outputs?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8802 |
| cosine_accuracy@3 | 0.9844 |
| cosine_accuracy@5 | 0.9948 |
| cosine_accuracy@10 | 0.9948 |
| cosine_precision@1 | 0.8802 |
| cosine_precision@3 | 0.3281 |
| cosine_precision@5 | 0.199 |
| cosine_precision@10 | 0.0995 |
| cosine_recall@1 | 0.8802 |
| cosine_recall@3 | 0.9844 |
| cosine_recall@5 | 0.9948 |
| cosine_recall@10 | 0.9948 |
| cosine_ndcg@10 | 0.9495 |
| cosine_mrr@10 | 0.9338 |
| **cosine_map@100** | **0.9342** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8854 |
| cosine_accuracy@3 | 0.9844 |
| cosine_accuracy@5 | 0.9948 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8854 |
| cosine_precision@3 | 0.3281 |
| cosine_precision@5 | 0.199 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8854 |
| cosine_recall@3 | 0.9844 |
| cosine_recall@5 | 0.9948 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9537 |
| cosine_mrr@10 | 0.9378 |
| **cosine_map@100** | **0.9378** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.901 |
| cosine_accuracy@3 | 0.9844 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.901 |
| cosine_precision@3 | 0.3281 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.901 |
| cosine_recall@3 | 0.9844 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9588 |
| cosine_mrr@10 | 0.9446 |
| **cosine_map@100** | **0.9446** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9062 |
| cosine_accuracy@3 | 0.9844 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9062 |
| cosine_precision@3 | 0.3281 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9062 |
| cosine_recall@3 | 0.9844 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9609 |
| cosine_mrr@10 | 0.9475 |
| **cosine_map@100** | **0.9475** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8906 |
| cosine_accuracy@3 | 0.9844 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8906 |
| cosine_precision@3 | 0.3281 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8906 |
| cosine_recall@3 | 0.9844 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9551 |
| cosine_mrr@10 | 0.9397 |
| **cosine_map@100** | **0.9397** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.04 | 5 | 4.9678 | - | - | - | - | - |
| 0.08 | 10 | 4.6482 | - | - | - | - | - |
| 0.12 | 15 | 5.0735 | - | - | - | - | - |
| 0.16 | 20 | 4.0336 | - | - | - | - | - |
| 0.2 | 25 | 3.7572 | - | - | - | - | - |
| 0.24 | 30 | 4.3054 | - | - | - | - | - |
| 0.28 | 35 | 2.6705 | - | - | - | - | - |
| 0.32 | 40 | 3.1929 | - | - | - | - | - |
| 0.36 | 45 | 3.1139 | - | - | - | - | - |
| 0.4 | 50 | 2.5219 | - | - | - | - | - |
| 0.44 | 55 | 3.1847 | - | - | - | - | - |
| 0.48 | 60 | 2.2306 | - | - | - | - | - |
| 0.52 | 65 | 2.251 | - | - | - | - | - |
| 0.56 | 70 | 2.2432 | - | - | - | - | - |
| 0.6 | 75 | 2.7462 | - | - | - | - | - |
| 0.64 | 80 | 2.9992 | - | - | - | - | - |
| 0.68 | 85 | 2.338 | - | - | - | - | - |
| 0.72 | 90 | 2.0169 | - | - | - | - | - |
| 0.76 | 95 | 1.257 | - | - | - | - | - |
| 0.8 | 100 | 1.5015 | - | - | - | - | - |
| 0.84 | 105 | 1.9198 | - | - | - | - | - |
| 0.88 | 110 | 2.2154 | - | - | - | - | - |
| 0.92 | 115 | 2.4026 | - | - | - | - | - |
| 0.96 | 120 | 1.911 | - | - | - | - | - |
| 1.0 | 125 | 2.079 | 0.9151 | 0.9098 | 0.9220 | 0.8788 | 0.9251 |
| 1.04 | 130 | 1.4704 | - | - | - | - | - |
| 1.08 | 135 | 0.7323 | - | - | - | - | - |
| 1.12 | 140 | 0.6308 | - | - | - | - | - |
| 1.16 | 145 | 0.4655 | - | - | - | - | - |
| 1.2 | 150 | 1.0186 | - | - | - | - | - |
| 1.24 | 155 | 1.1408 | - | - | - | - | - |
| 1.28 | 160 | 1.965 | - | - | - | - | - |
| 1.32 | 165 | 1.5987 | - | - | - | - | - |
| 1.3600 | 170 | 3.288 | - | - | - | - | - |
| 1.4 | 175 | 1.632 | - | - | - | - | - |
| 1.44 | 180 | 1.0376 | - | - | - | - | - |
| 1.48 | 185 | 0.9466 | - | - | - | - | - |
| 1.52 | 190 | 1.0106 | - | - | - | - | - |
| 1.56 | 195 | 1.4875 | - | - | - | - | - |
| 1.6 | 200 | 1.314 | - | - | - | - | - |
| 1.6400 | 205 | 1.3022 | - | - | - | - | - |
| 1.6800 | 210 | 1.5312 | - | - | - | - | - |
| 1.72 | 215 | 1.7982 | - | - | - | - | - |
| 1.76 | 220 | 1.7962 | - | - | - | - | - |
| 1.8 | 225 | 1.5788 | - | - | - | - | - |
| 1.8400 | 230 | 1.152 | - | - | - | - | - |
| 1.88 | 235 | 2.0556 | - | - | - | - | - |
| 1.92 | 240 | 1.3165 | - | - | - | - | - |
| 1.96 | 245 | 0.6941 | - | - | - | - | - |
| **2.0** | **250** | **1.2239** | **0.9404** | **0.944** | **0.9427** | **0.9327** | **0.9424** |
| 2.04 | 255 | 1.0423 | - | - | - | - | - |
| 2.08 | 260 | 0.8893 | - | - | - | - | - |
| 2.12 | 265 | 1.2859 | - | - | - | - | - |
| 2.16 | 270 | 1.4505 | - | - | - | - | - |
| 2.2 | 275 | 0.2728 | - | - | - | - | - |
| 2.24 | 280 | 0.6588 | - | - | - | - | - |
| 2.2800 | 285 | 0.8014 | - | - | - | - | - |
| 2.32 | 290 | 0.3053 | - | - | - | - | - |
| 2.36 | 295 | 1.4289 | - | - | - | - | - |
| 2.4 | 300 | 1.1458 | - | - | - | - | - |
| 2.44 | 305 | 0.6987 | - | - | - | - | - |
| 2.48 | 310 | 1.3389 | - | - | - | - | - |
| 2.52 | 315 | 1.2991 | - | - | - | - | - |
| 2.56 | 320 | 1.8088 | - | - | - | - | - |
| 2.6 | 325 | 0.4242 | - | - | - | - | - |
| 2.64 | 330 | 1.5873 | - | - | - | - | - |
| 2.68 | 335 | 1.3873 | - | - | - | - | - |
| 2.7200 | 340 | 1.4297 | - | - | - | - | - |
| 2.76 | 345 | 2.0637 | - | - | - | - | - |
| 2.8 | 350 | 1.1252 | - | - | - | - | - |
| 2.84 | 355 | 0.367 | - | - | - | - | - |
| 2.88 | 360 | 1.7606 | - | - | - | - | - |
| 2.92 | 365 | 1.196 | - | - | - | - | - |
| 2.96 | 370 | 1.8827 | - | - | - | - | - |
| 3.0 | 375 | 0.6822 | 0.9494 | 0.9479 | 0.9336 | 0.9414 | 0.9405 |
| 3.04 | 380 | 0.4954 | - | - | - | - | - |
| 3.08 | 385 | 0.1717 | - | - | - | - | - |
| 3.12 | 390 | 0.7435 | - | - | - | - | - |
| 3.16 | 395 | 1.4323 | - | - | - | - | - |
| 3.2 | 400 | 1.1207 | - | - | - | - | - |
| 3.24 | 405 | 1.9009 | - | - | - | - | - |
| 3.2800 | 410 | 1.6706 | - | - | - | - | - |
| 3.32 | 415 | 0.8378 | - | - | - | - | - |
| 3.36 | 420 | 1.0911 | - | - | - | - | - |
| 3.4 | 425 | 0.6565 | - | - | - | - | - |
| 3.44 | 430 | 1.0302 | - | - | - | - | - |
| 3.48 | 435 | 0.6425 | - | - | - | - | - |
| 3.52 | 440 | 1.1472 | - | - | - | - | - |
| 3.56 | 445 | 1.996 | - | - | - | - | - |
| 3.6 | 450 | 1.5308 | - | - | - | - | - |
| 3.64 | 455 | 0.7427 | - | - | - | - | - |
| 3.68 | 460 | 1.4596 | - | - | - | - | - |
| 3.7200 | 465 | 1.1984 | - | - | - | - | - |
| 3.76 | 470 | 0.7601 | - | - | - | - | - |
| 3.8 | 475 | 1.3544 | - | - | - | - | - |
| 3.84 | 480 | 1.6655 | - | - | - | - | - |
| 3.88 | 485 | 1.2596 | - | - | - | - | - |
| 3.92 | 490 | 0.9451 | - | - | - | - | - |
| 3.96 | 495 | 0.7079 | - | - | - | - | - |
| 4.0 | 500 | 1.3471 | 0.9453 | 0.9446 | 0.9404 | 0.9371 | 0.9335 |
| 4.04 | 505 | 0.4583 | - | - | - | - | - |
| 4.08 | 510 | 1.288 | - | - | - | - | - |
| 4.12 | 515 | 1.6946 | - | - | - | - | - |
| 4.16 | 520 | 1.1239 | - | - | - | - | - |
| 4.2 | 525 | 1.1026 | - | - | - | - | - |
| 4.24 | 530 | 1.4121 | - | - | - | - | - |
| 4.28 | 535 | 1.7113 | - | - | - | - | - |
| 4.32 | 540 | 0.8389 | - | - | - | - | - |
| 4.36 | 545 | 0.3117 | - | - | - | - | - |
| 4.4 | 550 | 0.3144 | - | - | - | - | - |
| 4.44 | 555 | 1.4694 | - | - | - | - | - |
| 4.48 | 560 | 1.3233 | - | - | - | - | - |
| 4.52 | 565 | 0.792 | - | - | - | - | - |
| 4.5600 | 570 | 0.4881 | - | - | - | - | - |
| 4.6 | 575 | 0.5097 | - | - | - | - | - |
| 4.64 | 580 | 1.6377 | - | - | - | - | - |
| 4.68 | 585 | 0.7273 | - | - | - | - | - |
| 4.72 | 590 | 1.5464 | - | - | - | - | - |
| 4.76 | 595 | 1.4392 | - | - | - | - | - |
| 4.8 | 600 | 1.4384 | - | - | - | - | - |
| 4.84 | 605 | 0.6375 | - | - | - | - | - |
| 4.88 | 610 | 1.0528 | - | - | - | - | - |
| 4.92 | 615 | 0.0276 | - | - | - | - | - |
| 4.96 | 620 | 0.9604 | - | - | - | - | - |
| 5.0 | 625 | 0.7219 | 0.9475 | 0.9446 | 0.9378 | 0.9397 | 0.9342 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |