jost commited on
Commit
22bd5a5
1 Parent(s): 1c94018

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Evaluation Results
39
+
40
+ <!--- Describe how your model was evaluated -->
41
+
42
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
43
+
44
+
45
+ ## Training
46
+ The model was trained with the parameters:
47
+
48
+ **DataLoader**:
49
+
50
+ `torch.utils.data.dataloader.DataLoader` of length 46 with parameters:
51
+ ```
52
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
+ ```
54
+
55
+ **Loss**:
56
+
57
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
58
+ ```
59
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
60
+ ```
61
+
62
+ Parameters of the fit()-Method:
63
+ ```
64
+ {
65
+ "epochs": 10,
66
+ "evaluation_steps": 50,
67
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
68
+ "max_grad_norm": 1,
69
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
+ "optimizer_params": {
71
+ "lr": 2e-05
72
+ },
73
+ "scheduler": "WarmupLinear",
74
+ "steps_per_epoch": null,
75
+ "warmup_steps": 46,
76
+ "weight_decay": 0.01
77
+ }
78
+ ```
79
+
80
+
81
+ ## Full Model Architecture
82
+ ```
83
+ SentenceTransformer(
84
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
85
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
86
+ (2): Normalize()
87
+ )
88
+ ```
89
+
90
+ ## Citing & Authors
91
+
92
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.35.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.3.1",
4
+ "transformers": "4.35.2",
5
+ "pytorch": "2.1.0+cu121"
6
+ }
7
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,-1,0.7311072056239016,0.8137082601054482,0.8523725834797891,0.8717047451669596,0.7311072056239016,0.7311072056239016,0.27123608670181604,0.8137082601054482,0.1704745166959578,0.8523725834797891,0.08717047451669595,0.8717047451669596,0.7793706586325213,0.801937895476984,0.7821256605063656,0.7311072056239016,0.8137082601054482,0.8523725834797891,0.8717047451669596,0.7311072056239016,0.7311072056239016,0.27123608670181604,0.8137082601054482,0.1704745166959578,0.8523725834797891,0.08717047451669595,0.8717047451669596,0.7793706586325213,0.801937895476984,0.7821256605063656
3
+ 1,-1,0.7363796133567663,0.8312829525483304,0.8523725834797891,0.8769771528998243,0.7363796133567663,0.7363796133567663,0.27709431751611013,0.8312829525483304,0.1704745166959578,0.8523725834797891,0.08769771528998241,0.8769771528998243,0.7862987139788543,0.8084973361802221,0.7901419381670312,0.7363796133567663,0.8312829525483304,0.8523725834797891,0.8769771528998243,0.7363796133567663,0.7363796133567663,0.27709431751611013,0.8312829525483304,0.1704745166959578,0.8523725834797891,0.08769771528998241,0.8769771528998243,0.7862987139788543,0.8084973361802221,0.7901419381670312
4
+ 2,-1,0.7398945518453427,0.8312829525483304,0.8558875219683656,0.8840070298769771,0.7398945518453427,0.7398945518453427,0.27709431751611013,0.8312829525483304,0.1711775043936731,0.8558875219683656,0.08840070298769771,0.8840070298769771,0.7927371886071359,0.8150524882454125,0.7960666647776321,0.7398945518453427,0.8312829525483304,0.8558875219683656,0.8840070298769771,0.7398945518453427,0.7398945518453427,0.27709431751611013,0.8312829525483304,0.1711775043936731,0.8558875219683656,0.08840070298769771,0.8840070298769771,0.7927371886071359,0.8150524882454125,0.7960666647776321
5
+ 3,-1,0.7416520210896309,0.8295254833040422,0.8558875219683656,0.8822495606326889,0.7416520210896309,0.7416520210896309,0.2765084944346807,0.8295254833040422,0.1711775043936731,0.8558875219683656,0.08822495606326888,0.8822495606326889,0.7925732976260218,0.8145201530019933,0.7960357418981618,0.7416520210896309,0.8295254833040422,0.8558875219683656,0.8822495606326889,0.7416520210896309,0.7416520210896309,0.2765084944346807,0.8295254833040422,0.1711775043936731,0.8558875219683656,0.08822495606326888,0.8822495606326889,0.7925732976260218,0.8145201530019933,0.7960357418981618
6
+ 4,-1,0.7469244288224957,0.8330404217926186,0.8611599297012302,0.8892794376098418,0.7469244288224957,0.7469244288224957,0.27768014059753954,0.8330404217926186,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7970945964794823,0.8195531051598309,0.7999282732594788,0.7469244288224957,0.8330404217926186,0.8611599297012302,0.8892794376098418,0.7469244288224957,0.7469244288224957,0.27768014059753954,0.8330404217926186,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7970945964794823,0.8195531051598309,0.7999282732594788
7
+ 5,-1,0.7504393673110721,0.8347978910369068,0.8611599297012302,0.8892794376098418,0.7504393673110721,0.7504393673110721,0.27826596367896894,0.8347978910369068,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7982606633748985,0.8203660815055065,0.8011591766827177,0.7504393673110721,0.8347978910369068,0.8611599297012302,0.8892794376098418,0.7504393673110721,0.7504393673110721,0.27826596367896894,0.8347978910369068,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7982606633748985,0.8203660815055065,0.8011591766827177
8
+ 6,-1,0.7504393673110721,0.8347978910369068,0.8629173989455184,0.8910369068541301,0.7504393673110721,0.7504393673110721,0.27826596367896894,0.8347978910369068,0.17258347978910368,0.8629173989455184,0.089103690685413,0.8910369068541301,0.7992670237397828,0.8215712863132953,0.8020631809462404,0.7504393673110721,0.8347978910369068,0.8629173989455184,0.8910369068541301,0.7504393673110721,0.7504393673110721,0.27826596367896894,0.8347978910369068,0.17258347978910368,0.8629173989455184,0.089103690685413,0.8910369068541301,0.7992670237397828,0.8215712863132953,0.8020631809462404
9
+ 7,-1,0.7521968365553603,0.8330404217926186,0.8611599297012302,0.8892794376098418,0.7521968365553603,0.7521968365553603,0.27768014059753954,0.8330404217926186,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7990145618880239,0.8209507638647044,0.8020783392295333,0.7521968365553603,0.8330404217926186,0.8611599297012302,0.8892794376098418,0.7521968365553603,0.7521968365553603,0.27768014059753954,0.8330404217926186,0.17223198594024605,0.8611599297012302,0.08892794376098417,0.8892794376098418,0.7990145618880239,0.8209507638647044,0.8020783392295333
10
+ 8,-1,0.7486818980667839,0.836555360281195,0.8629173989455184,0.8892794376098418,0.7486818980667839,0.7486818980667839,0.27885178676039835,0.836555360281195,0.17258347978910368,0.8629173989455184,0.08892794376098417,0.8892794376098418,0.7983262197673444,0.8204927238131682,0.8013681657243876,0.7486818980667839,0.836555360281195,0.8629173989455184,0.8892794376098418,0.7486818980667839,0.7486818980667839,0.27885178676039835,0.836555360281195,0.17258347978910368,0.8629173989455184,0.08892794376098417,0.8892794376098418,0.7983262197673444,0.8204927238131682,0.8013681657243876
11
+ 9,-1,0.7451669595782073,0.8347978910369068,0.8629173989455184,0.8892794376098418,0.7451669595782073,0.7451669595782073,0.27826596367896894,0.8347978910369068,0.17258347978910368,0.8629173989455184,0.08892794376098417,0.8892794376098418,0.7959466622032526,0.8187096113234333,0.7989969338619682,0.7451669595782073,0.8347978910369068,0.8629173989455184,0.8892794376098418,0.7451669595782073,0.7451669595782073,0.27826596367896894,0.8347978910369068,0.17258347978910368,0.8629173989455184,0.08892794376098417,0.8892794376098418,0.7959466622032526,0.8187096113234333,0.7989969338619682
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4aeae705da6bcafb6e06541500dccc14bd94e08f36bd992b205fe5c3064354
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1cc44ad7faaeec47241864835473fd5403f2da94673f3f764a77ebcb0a803ec
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }