josv commited on
Commit
693ca5c
·
1 Parent(s): a8c2b69

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.39 +/- 19.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7539fe3820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7539fe38b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7539fe3940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7539fe39d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7539fe3a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f7539fe3af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7539fe3b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7539fe3c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7539fe3ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7539fe3d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7539fe3dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7539fe3e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7539fdd9f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674399829663099766, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNrnTt7Tpe6nsdTOQlmSTRbZCc53t90uAAAgD8AAIA/pl2zPRQWi7rFJ3i7QtLLtirwATu4w406AACAPwAAAABmIUK9KfhLun/ug7oPJku1k7nRumpcmjkAAIA/AACAP7OXMT2/mOk+vFaQvYVYjr7yGAG9WGCMvQAAAAAAAAAATVlRveGQq7oW7u06LEmANsfCKzq7c2s1AACAPwAAgD8NueO9TL0YPxZtHD7ECq6+MgJvPI0VgjwAAAAAAAAAAMCQur2lfWE+YZ7FPUHgkL5kfVc9k/1DuwAAAAAAAAAAmh0tPfbER7rMHLs6YMGqNQ3OsbizM925AACAPwAAgD9NaVi9SIuhuu/6lbr8kpS1JZ3TOr+krDkAAIA/AACAPwA2cLxccyy6hc2Su2LOgLa2NR26ArisOgAAgD8AAIA/Nt9pvtQpKj+p6CY+pTlzvnBph73yBsE9AAAAAAAAAACzkbw9egYnP/gxBrtzU3C+x2PPPC1VgTsAAAAAAAAAADNjUTx7Hoi6il9Yum/CgbXAjMq6/cl6OQAAgD8AAIA/gFcmPXsCgLo7m4q3r59ssjB3ijmq46E2AACAPwAAgD+acS6+2+taPwasZz31j6G+TYmNvboNHz4AAAAAAAAAAAAYLDsEgtI+gpKPPe/ajb6/14M9tsAZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYf91blrzYECUhpRSlIwBbJRN6AOMAXSUR0CSvJbxEv0zdX2UKGgGaAloD0MIUu+pnHb/ZkCUhpRSlGgVTegDaBZHQJLC/Ytg8bJ1fZQoaAZoCWgPQwjD2EKQg7hCQJSGlFKUaBVL7WgWR0CSyZ/aQFLWdX2UKGgGaAloD0MIkSi0rPt9ZECUhpRSlGgVTegDaBZHQJLLkrmQr+Z1fZQoaAZoCWgPQwgrptJPuLdjQJSGlFKUaBVN6ANoFkdAksyYuK4x13V9lChoBmgJaA9DCNTTR+APn2FAlIaUUpRoFU3oA2gWR0CS0U0eEIw/dX2UKGgGaAloD0MIsg+yLBhGaECUhpRSlGgVTegDaBZHQJLWzZrYXft1fZQoaAZoCWgPQwhKCFbVy75QQJSGlFKUaBVLzWgWR0CS1xgLqlgudX2UKGgGaAloD0MIsAER4sqZTkCUhpRSlGgVS7loFkdAktteTaCcw3V9lChoBmgJaA9DCAlwehdvvGdAlIaUUpRoFU3oA2gWR0CS3C2YfGModX2UKGgGaAloD0MI12zlJX8OZkCUhpRSlGgVTegDaBZHQJLjOCGvfTF1fZQoaAZoCWgPQwiPi2oR0XNkQJSGlFKUaBVN6ANoFkdAkuV23fAKv3V9lChoBmgJaA9DCEloy7mUxGNAlIaUUpRoFU3oA2gWR0CS5fcOskprdX2UKGgGaAloD0MInkFD/4TsZECUhpRSlGgVTegDaBZHQJLmLSpiqhl1fZQoaAZoCWgPQwgyk6gX/MNgQJSGlFKUaBVN6ANoFkdAkvoAiml67nV9lChoBmgJaA9DCK2HLxPFnmVAlIaUUpRoFU3oA2gWR0CS+ikEs8PndX2UKGgGaAloD0MI6+QMxZ19YUCUhpRSlGgVTegDaBZHQJL7eWAwwkB1fZQoaAZoCWgPQwgvF/GdGIJkQJSGlFKUaBVN6ANoFkdAkv9kFr2xp3V9lChoBmgJaA9DCHDtRElIrk1AlIaUUpRoFUv0aBZHQJMDjQHAymB1fZQoaAZoCWgPQwito6oJovxiQJSGlFKUaBVN6ANoFkdAkwRaptJnQXV9lChoBmgJaA9DCK5jXHFxbWZAlIaUUpRoFU3oA2gWR0CTCncghbGFdX2UKGgGaAloD0MI0/iFVxJYY0CUhpRSlGgVTegDaBZHQJMREwZflZJ1fZQoaAZoCWgPQwj2fThICE1lQJSGlFKUaBVN6ANoFkdAkxQq4QSSNnV9lChoBmgJaA9DCCMRGsFGx2RAlIaUUpRoFU3oA2gWR0CTIK0xubZwdX2UKGgGaAloD0MIz/i+uFQbZECUhpRSlGgVTegDaBZHQJMhCb+cYqJ1fZQoaAZoCWgPQwhf0EICxtJnQJSGlFKUaBVN6ANoFkdAkyaVVktmMHV9lChoBmgJaA9DCCcuxysQOmJAlIaUUpRoFU3oA2gWR0CTJ4XIEKVqdX2UKGgGaAloD0MICp+tg4OhZECUhpRSlGgVTegDaBZHQJMv96+nIhh1fZQoaAZoCWgPQwjsF+yG7Y1tQJSGlFKUaBVNTQJoFkdAkzD+ctoSMHV9lChoBmgJaA9DCCUgJuHCsWNAlIaUUpRoFU3oA2gWR0CTMsmrsByTdX2UKGgGaAloD0MIvp8aL12OZUCUhpRSlGgVTegDaBZHQJMzriNsFdN1fZQoaAZoCWgPQwjv/nivWv08QJSGlFKUaBVL1WgWR0CTNBOvMbFTdX2UKGgGaAloD0MI2UP7WEG1ZkCUhpRSlGgVTegDaBZHQJM1MSamXPZ1fZQoaAZoCWgPQwiCyCJNvPhlQJSGlFKUaBVN6ANoFkdAkzVm+fywwHV9lChoBmgJaA9DCOJYF7dReWNAlIaUUpRoFU3oA2gWR0CTSVxGlQ/HdX2UKGgGaAloD0MIlDDT9i83ZECUhpRSlGgVTegDaBZHQJNNqQjlgc91fZQoaAZoCWgPQwh7Tnrf+JJkQJSGlFKUaBVN6ANoFkdAk1J5nHvMKXV9lChoBmgJaA9DCJBrQ8W4JmNAlIaUUpRoFU3oA2gWR0CTU1EU0vXcdX2UKGgGaAloD0MILpCg+LHRY0CUhpRSlGgVTegDaBZHQJNgFMvh60J1fZQoaAZoCWgPQwgZNzXQ/OtjQJSGlFKUaBVN6ANoFkdAk2MJbY9PlHV9lChoBmgJaA9DCKvRqwFKNWRAlIaUUpRoFU3oA2gWR0CTbdDTjNpudX2UKGgGaAloD0MI5wEs8utiZECUhpRSlGgVTegDaBZHQJNuGAEt/Wl1fZQoaAZoCWgPQwhJumbyzQZhQJSGlFKUaBVN6ANoFkdAk3MJ84Pwu3V9lChoBmgJaA9DCDfeHRmrMWFAlIaUUpRoFU3oA2gWR0CTeiULUkOadX2UKGgGaAloD0MIB2Fu9/J/YkCUhpRSlGgVTegDaBZHQJN6+HVPN3Z1fZQoaAZoCWgPQwixw5j09/1kQJSGlFKUaBVN6ANoFkdAk3xoFzMibHV9lChoBmgJaA9DCFAdq5QeOGRAlIaUUpRoFU3oA2gWR0CTfRylN1yOdX2UKGgGaAloD0MIjuVd9YCTXECUhpRSlGgVTegDaBZHQJN9cyZa3Zx1fZQoaAZoCWgPQwhORpVhXCVnQJSGlFKUaBVN6ANoFkdAk35ka/ATI3V9lChoBmgJaA9DCPQ1y2WjIGRAlIaUUpRoFU3oA2gWR0CTfpNpdrwfdX2UKGgGaAloD0MII9dNKa/PYUCUhpRSlGgVTegDaBZHQJN//vNNahZ1fZQoaAZoCWgPQwiRY+sZwkVmQJSGlFKUaBVN6ANoFkdAk5bjoQnQY3V9lChoBmgJaA9DCC/9S1IZDGBAlIaUUpRoFU3oA2gWR0CTm5MXJo0zdX2UKGgGaAloD0MI/fSfNT/7ZECUhpRSlGgVTegDaBZHQJOch1IRRMx1fZQoaAZoCWgPQwi3Y+qu7MBvQJSGlFKUaBVNfgFoFkdAk6GS8e0XxnV9lChoBmgJaA9DCIZzDTO0DmdAlIaUUpRoFU3oA2gWR0CTquwn6VMVdX2UKGgGaAloD0MI7bq3IrGOaECUhpRSlGgVTegDaBZHQJOuRStNi6R1fZQoaAZoCWgPQwiL4lXWNhRgQJSGlFKUaBVN6ANoFkdAk7pw7PppvnV9lChoBmgJaA9DCLCQuTKovGNAlIaUUpRoFU3oA2gWR0CTusZIQOFydX2UKGgGaAloD0MIrvIEws7OYkCUhpRSlGgVTegDaBZHQJPA7ZK3/gl1fZQoaAZoCWgPQwifAIqRpUBgQJSGlFKUaBVN6ANoFkdAk8ltkJ8fFXV9lChoBmgJaA9DCNrIdVPKI2dAlIaUUpRoFU3oA2gWR0CTzCPM0P6LdX2UKGgGaAloD0MId9Zuu1D0YUCUhpRSlGgVTegDaBZHQJPNBeY2Kl51fZQoaAZoCWgPQwjayHVTyq1mQJSGlFKUaBVN6ANoFkdAk81oJJGvwHV9lChoBmgJaA9DCJrpXif1G2ZAlIaUUpRoFU3oA2gWR0CTzmeyRjjJdX2UKGgGaAloD0MI7tEb7iNgY0CUhpRSlGgVTegDaBZHQJPOmXUpd8l1fZQoaAZoCWgPQwgoLVxWYS9kQJSGlFKUaBVN6ANoFkdAk9AFMEidKHV9lChoBmgJaA9DCJcfuMqT5mRAlIaUUpRoFU3oA2gWR0CT5lcKw6hhdX2UKGgGaAloD0MIE/OspBUwYkCUhpRSlGgVTegDaBZHQJPqdobn5i51fZQoaAZoCWgPQwgnTYOieadlQJSGlFKUaBVN6ANoFkdAk+tA1WKdhHV9lChoBmgJaA9DCMtMaf0tg2dAlIaUUpRoFU3oA2gWR0CT76vTPSlWdX2UKGgGaAloD0MIOgg6WlX+ZkCUhpRSlGgVTegDaBZHQJP4Be2NNrV1fZQoaAZoCWgPQwgb9KW3vx5nQJSGlFKUaBVN6ANoFkdAk/tqXrt3OnV9lChoBmgJaA9DCDf6mA8IKVBAlIaUUpRoFUvUaBZHQJQGm8pTdcl1fZQoaAZoCWgPQwjB4Jo7enVgQJSGlFKUaBVN6ANoFkdAlAf+0w8GLXV9lChoBmgJaA9DCAtET8qkG19AlIaUUpRoFU3oA2gWR0CUCFTmnwXqdX2UKGgGaAloD0MI7dXHQ1/XZECUhpRSlGgVTegDaBZHQJQOeSr5qM51fZQoaAZoCWgPQwiKITmZOA9nQJSGlFKUaBVN6ANoFkdAlBc4SL61s3V9lChoBmgJaA9DCHCzeLEw6WRAlIaUUpRoFU3oA2gWR0CUGkk5p8F7dX2UKGgGaAloD0MIshNeglOSYUCUhpRSlGgVTegDaBZHQJQbJ+WnjyZ1fZQoaAZoCWgPQwhYrUz4pa9bQJSGlFKUaBVN6ANoFkdAlBuRsQ/X5HV9lChoBmgJaA9DCA6Fz9bBm15AlIaUUpRoFU3oA2gWR0CUHNJmdy1edX2UKGgGaAloD0MIg8E1d/TEXECUhpRSlGgVTegDaBZHQJQdCU7jkuJ1fZQoaAZoCWgPQwh40Oy6t3BiQJSGlFKUaBVN6ANoFkdAlB6xg3Lmp3V9lChoBmgJaA9DCDi9i/fjCGRAlIaUUpRoFU3oA2gWR0CUNgWqcVgydX2UKGgGaAloD0MI2zS21wLHZECUhpRSlGgVTegDaBZHQJQ7PSc9W6t1fZQoaAZoCWgPQwgSEf5FUJ5oQJSGlFKUaBVN6ANoFkdAlDwln/T9bXV9lChoBmgJaA9DCFU01v7OKWVAlIaUUpRoFU3oA2gWR0CUQPUc4o7WdX2UKGgGaAloD0MIem8MAcByY0CUhpRSlGgVTegDaBZHQJRMkgFHJ911fZQoaAZoCWgPQwgn2H+dm1lmQJSGlFKUaBVN6ANoFkdAlFeH+yZ8bHV9lChoBmgJaA9DCIj029eBoWdAlIaUUpRoFU3oA2gWR0CUWM92ovSMdX2UKGgGaAloD0MIW5caoZ+LYUCUhpRSlGgVTegDaBZHQJRZHFefI0Z1fZQoaAZoCWgPQwgSvCGNiuJiQJSGlFKUaBVN6ANoFkdAlF5G8qWkanV9lChoBmgJaA9DCCjTaHKxWmJAlIaUUpRoFU3oA2gWR0CUZhL6DXe4dX2UKGgGaAloD0MIY0Si0LJSYUCUhpRSlGgVTegDaBZHQJRo6JLuhK11fZQoaAZoCWgPQwg4ns+Aeh9nQJSGlFKUaBVN6ANoFkdAlGm3AIppe3V9lChoBmgJaA9DCFaDMLd7XmVAlIaUUpRoFU3oA2gWR0CUahyp71IzdX2UKGgGaAloD0MIptQl4xiQX0CUhpRSlGgVTegDaBZHQJRrQDyOJch1fZQoaAZoCWgPQwhRFOgT+WRmQJSGlFKUaBVN6ANoFkdAlGt5BX0Xg3V9lChoBmgJaA9DCBQGZRpNumNAlIaUUpRoFU3oA2gWR0CUbRC7K7qZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c76ccc3c200600ece4d257c7515568bfe222ede1b96d242842c788604750225f
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7539fe3820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7539fe38b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7539fe3940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7539fe39d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7539fe3a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7539fe3af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7539fe3b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7539fe3c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7539fe3ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7539fe3d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7539fe3dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7539fe3e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7539fdd9f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674399829663099766,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNrnTt7Tpe6nsdTOQlmSTRbZCc53t90uAAAgD8AAIA/pl2zPRQWi7rFJ3i7QtLLtirwATu4w406AACAPwAAAABmIUK9KfhLun/ug7oPJku1k7nRumpcmjkAAIA/AACAP7OXMT2/mOk+vFaQvYVYjr7yGAG9WGCMvQAAAAAAAAAATVlRveGQq7oW7u06LEmANsfCKzq7c2s1AACAPwAAgD8NueO9TL0YPxZtHD7ECq6+MgJvPI0VgjwAAAAAAAAAAMCQur2lfWE+YZ7FPUHgkL5kfVc9k/1DuwAAAAAAAAAAmh0tPfbER7rMHLs6YMGqNQ3OsbizM925AACAPwAAgD9NaVi9SIuhuu/6lbr8kpS1JZ3TOr+krDkAAIA/AACAPwA2cLxccyy6hc2Su2LOgLa2NR26ArisOgAAgD8AAIA/Nt9pvtQpKj+p6CY+pTlzvnBph73yBsE9AAAAAAAAAACzkbw9egYnP/gxBrtzU3C+x2PPPC1VgTsAAAAAAAAAADNjUTx7Hoi6il9Yum/CgbXAjMq6/cl6OQAAgD8AAIA/gFcmPXsCgLo7m4q3r59ssjB3ijmq46E2AACAPwAAgD+acS6+2+taPwasZz31j6G+TYmNvboNHz4AAAAAAAAAAAAYLDsEgtI+gpKPPe/ajb6/14M9tsAZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYf91blrzYECUhpRSlIwBbJRN6AOMAXSUR0CSvJbxEv0zdX2UKGgGaAloD0MIUu+pnHb/ZkCUhpRSlGgVTegDaBZHQJLC/Ytg8bJ1fZQoaAZoCWgPQwjD2EKQg7hCQJSGlFKUaBVL7WgWR0CSyZ/aQFLWdX2UKGgGaAloD0MIkSi0rPt9ZECUhpRSlGgVTegDaBZHQJLLkrmQr+Z1fZQoaAZoCWgPQwgrptJPuLdjQJSGlFKUaBVN6ANoFkdAksyYuK4x13V9lChoBmgJaA9DCNTTR+APn2FAlIaUUpRoFU3oA2gWR0CS0U0eEIw/dX2UKGgGaAloD0MIsg+yLBhGaECUhpRSlGgVTegDaBZHQJLWzZrYXft1fZQoaAZoCWgPQwhKCFbVy75QQJSGlFKUaBVLzWgWR0CS1xgLqlgudX2UKGgGaAloD0MIsAER4sqZTkCUhpRSlGgVS7loFkdAktteTaCcw3V9lChoBmgJaA9DCAlwehdvvGdAlIaUUpRoFU3oA2gWR0CS3C2YfGModX2UKGgGaAloD0MI12zlJX8OZkCUhpRSlGgVTegDaBZHQJLjOCGvfTF1fZQoaAZoCWgPQwiPi2oR0XNkQJSGlFKUaBVN6ANoFkdAkuV23fAKv3V9lChoBmgJaA9DCEloy7mUxGNAlIaUUpRoFU3oA2gWR0CS5fcOskprdX2UKGgGaAloD0MInkFD/4TsZECUhpRSlGgVTegDaBZHQJLmLSpiqhl1fZQoaAZoCWgPQwgyk6gX/MNgQJSGlFKUaBVN6ANoFkdAkvoAiml67nV9lChoBmgJaA9DCK2HLxPFnmVAlIaUUpRoFU3oA2gWR0CS+ikEs8PndX2UKGgGaAloD0MI6+QMxZ19YUCUhpRSlGgVTegDaBZHQJL7eWAwwkB1fZQoaAZoCWgPQwgvF/GdGIJkQJSGlFKUaBVN6ANoFkdAkv9kFr2xp3V9lChoBmgJaA9DCHDtRElIrk1AlIaUUpRoFUv0aBZHQJMDjQHAymB1fZQoaAZoCWgPQwito6oJovxiQJSGlFKUaBVN6ANoFkdAkwRaptJnQXV9lChoBmgJaA9DCK5jXHFxbWZAlIaUUpRoFU3oA2gWR0CTCncghbGFdX2UKGgGaAloD0MI0/iFVxJYY0CUhpRSlGgVTegDaBZHQJMREwZflZJ1fZQoaAZoCWgPQwj2fThICE1lQJSGlFKUaBVN6ANoFkdAkxQq4QSSNnV9lChoBmgJaA9DCCMRGsFGx2RAlIaUUpRoFU3oA2gWR0CTIK0xubZwdX2UKGgGaAloD0MIz/i+uFQbZECUhpRSlGgVTegDaBZHQJMhCb+cYqJ1fZQoaAZoCWgPQwhf0EICxtJnQJSGlFKUaBVN6ANoFkdAkyaVVktmMHV9lChoBmgJaA9DCCcuxysQOmJAlIaUUpRoFU3oA2gWR0CTJ4XIEKVqdX2UKGgGaAloD0MICp+tg4OhZECUhpRSlGgVTegDaBZHQJMv96+nIhh1fZQoaAZoCWgPQwjsF+yG7Y1tQJSGlFKUaBVNTQJoFkdAkzD+ctoSMHV9lChoBmgJaA9DCCUgJuHCsWNAlIaUUpRoFU3oA2gWR0CTMsmrsByTdX2UKGgGaAloD0MIvp8aL12OZUCUhpRSlGgVTegDaBZHQJMzriNsFdN1fZQoaAZoCWgPQwjv/nivWv08QJSGlFKUaBVL1WgWR0CTNBOvMbFTdX2UKGgGaAloD0MI2UP7WEG1ZkCUhpRSlGgVTegDaBZHQJM1MSamXPZ1fZQoaAZoCWgPQwiCyCJNvPhlQJSGlFKUaBVN6ANoFkdAkzVm+fywwHV9lChoBmgJaA9DCOJYF7dReWNAlIaUUpRoFU3oA2gWR0CTSVxGlQ/HdX2UKGgGaAloD0MIlDDT9i83ZECUhpRSlGgVTegDaBZHQJNNqQjlgc91fZQoaAZoCWgPQwh7Tnrf+JJkQJSGlFKUaBVN6ANoFkdAk1J5nHvMKXV9lChoBmgJaA9DCJBrQ8W4JmNAlIaUUpRoFU3oA2gWR0CTU1EU0vXcdX2UKGgGaAloD0MILpCg+LHRY0CUhpRSlGgVTegDaBZHQJNgFMvh60J1fZQoaAZoCWgPQwgZNzXQ/OtjQJSGlFKUaBVN6ANoFkdAk2MJbY9PlHV9lChoBmgJaA9DCKvRqwFKNWRAlIaUUpRoFU3oA2gWR0CTbdDTjNpudX2UKGgGaAloD0MI5wEs8utiZECUhpRSlGgVTegDaBZHQJNuGAEt/Wl1fZQoaAZoCWgPQwhJumbyzQZhQJSGlFKUaBVN6ANoFkdAk3MJ84Pwu3V9lChoBmgJaA9DCDfeHRmrMWFAlIaUUpRoFU3oA2gWR0CTeiULUkOadX2UKGgGaAloD0MIB2Fu9/J/YkCUhpRSlGgVTegDaBZHQJN6+HVPN3Z1fZQoaAZoCWgPQwixw5j09/1kQJSGlFKUaBVN6ANoFkdAk3xoFzMibHV9lChoBmgJaA9DCFAdq5QeOGRAlIaUUpRoFU3oA2gWR0CTfRylN1yOdX2UKGgGaAloD0MIjuVd9YCTXECUhpRSlGgVTegDaBZHQJN9cyZa3Zx1fZQoaAZoCWgPQwhORpVhXCVnQJSGlFKUaBVN6ANoFkdAk35ka/ATI3V9lChoBmgJaA9DCPQ1y2WjIGRAlIaUUpRoFU3oA2gWR0CTfpNpdrwfdX2UKGgGaAloD0MII9dNKa/PYUCUhpRSlGgVTegDaBZHQJN//vNNahZ1fZQoaAZoCWgPQwiRY+sZwkVmQJSGlFKUaBVN6ANoFkdAk5bjoQnQY3V9lChoBmgJaA9DCC/9S1IZDGBAlIaUUpRoFU3oA2gWR0CTm5MXJo0zdX2UKGgGaAloD0MI/fSfNT/7ZECUhpRSlGgVTegDaBZHQJOch1IRRMx1fZQoaAZoCWgPQwi3Y+qu7MBvQJSGlFKUaBVNfgFoFkdAk6GS8e0XxnV9lChoBmgJaA9DCIZzDTO0DmdAlIaUUpRoFU3oA2gWR0CTquwn6VMVdX2UKGgGaAloD0MI7bq3IrGOaECUhpRSlGgVTegDaBZHQJOuRStNi6R1fZQoaAZoCWgPQwiL4lXWNhRgQJSGlFKUaBVN6ANoFkdAk7pw7PppvnV9lChoBmgJaA9DCLCQuTKovGNAlIaUUpRoFU3oA2gWR0CTusZIQOFydX2UKGgGaAloD0MIrvIEws7OYkCUhpRSlGgVTegDaBZHQJPA7ZK3/gl1fZQoaAZoCWgPQwifAIqRpUBgQJSGlFKUaBVN6ANoFkdAk8ltkJ8fFXV9lChoBmgJaA9DCNrIdVPKI2dAlIaUUpRoFU3oA2gWR0CTzCPM0P6LdX2UKGgGaAloD0MId9Zuu1D0YUCUhpRSlGgVTegDaBZHQJPNBeY2Kl51fZQoaAZoCWgPQwjayHVTyq1mQJSGlFKUaBVN6ANoFkdAk81oJJGvwHV9lChoBmgJaA9DCJrpXif1G2ZAlIaUUpRoFU3oA2gWR0CTzmeyRjjJdX2UKGgGaAloD0MI7tEb7iNgY0CUhpRSlGgVTegDaBZHQJPOmXUpd8l1fZQoaAZoCWgPQwgoLVxWYS9kQJSGlFKUaBVN6ANoFkdAk9AFMEidKHV9lChoBmgJaA9DCJcfuMqT5mRAlIaUUpRoFU3oA2gWR0CT5lcKw6hhdX2UKGgGaAloD0MIE/OspBUwYkCUhpRSlGgVTegDaBZHQJPqdobn5i51fZQoaAZoCWgPQwgnTYOieadlQJSGlFKUaBVN6ANoFkdAk+tA1WKdhHV9lChoBmgJaA9DCMtMaf0tg2dAlIaUUpRoFU3oA2gWR0CT76vTPSlWdX2UKGgGaAloD0MIOgg6WlX+ZkCUhpRSlGgVTegDaBZHQJP4Be2NNrV1fZQoaAZoCWgPQwgb9KW3vx5nQJSGlFKUaBVN6ANoFkdAk/tqXrt3OnV9lChoBmgJaA9DCDf6mA8IKVBAlIaUUpRoFUvUaBZHQJQGm8pTdcl1fZQoaAZoCWgPQwjB4Jo7enVgQJSGlFKUaBVN6ANoFkdAlAf+0w8GLXV9lChoBmgJaA9DCAtET8qkG19AlIaUUpRoFU3oA2gWR0CUCFTmnwXqdX2UKGgGaAloD0MI7dXHQ1/XZECUhpRSlGgVTegDaBZHQJQOeSr5qM51fZQoaAZoCWgPQwiKITmZOA9nQJSGlFKUaBVN6ANoFkdAlBc4SL61s3V9lChoBmgJaA9DCHCzeLEw6WRAlIaUUpRoFU3oA2gWR0CUGkk5p8F7dX2UKGgGaAloD0MIshNeglOSYUCUhpRSlGgVTegDaBZHQJQbJ+WnjyZ1fZQoaAZoCWgPQwhYrUz4pa9bQJSGlFKUaBVN6ANoFkdAlBuRsQ/X5HV9lChoBmgJaA9DCA6Fz9bBm15AlIaUUpRoFU3oA2gWR0CUHNJmdy1edX2UKGgGaAloD0MIg8E1d/TEXECUhpRSlGgVTegDaBZHQJQdCU7jkuJ1fZQoaAZoCWgPQwh40Oy6t3BiQJSGlFKUaBVN6ANoFkdAlB6xg3Lmp3V9lChoBmgJaA9DCDi9i/fjCGRAlIaUUpRoFU3oA2gWR0CUNgWqcVgydX2UKGgGaAloD0MI2zS21wLHZECUhpRSlGgVTegDaBZHQJQ7PSc9W6t1fZQoaAZoCWgPQwgSEf5FUJ5oQJSGlFKUaBVN6ANoFkdAlDwln/T9bXV9lChoBmgJaA9DCFU01v7OKWVAlIaUUpRoFU3oA2gWR0CUQPUc4o7WdX2UKGgGaAloD0MIem8MAcByY0CUhpRSlGgVTegDaBZHQJRMkgFHJ911fZQoaAZoCWgPQwgn2H+dm1lmQJSGlFKUaBVN6ANoFkdAlFeH+yZ8bHV9lChoBmgJaA9DCIj029eBoWdAlIaUUpRoFU3oA2gWR0CUWM92ovSMdX2UKGgGaAloD0MIW5caoZ+LYUCUhpRSlGgVTegDaBZHQJRZHFefI0Z1fZQoaAZoCWgPQwgSvCGNiuJiQJSGlFKUaBVN6ANoFkdAlF5G8qWkanV9lChoBmgJaA9DCCjTaHKxWmJAlIaUUpRoFU3oA2gWR0CUZhL6DXe4dX2UKGgGaAloD0MIY0Si0LJSYUCUhpRSlGgVTegDaBZHQJRo6JLuhK11fZQoaAZoCWgPQwg4ns+Aeh9nQJSGlFKUaBVN6ANoFkdAlGm3AIppe3V9lChoBmgJaA9DCFaDMLd7XmVAlIaUUpRoFU3oA2gWR0CUahyp71IzdX2UKGgGaAloD0MIptQl4xiQX0CUhpRSlGgVTegDaBZHQJRrQDyOJch1fZQoaAZoCWgPQwhRFOgT+WRmQJSGlFKUaBVN6ANoFkdAlGt5BX0Xg3V9lChoBmgJaA9DCBQGZRpNumNAlIaUUpRoFU3oA2gWR0CUbRC7K7qZdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90800c22ee4fcddad6851f4ddb0eee5bb26e43b370cd804410d7dd3b60eba69
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2875e4befa9bc84fa8c6c0b742c712836f2fa4baef7e11a2e0ef3189004afd5
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.39262334879015, "std_reward": 19.188559997246227, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T15:27:26.896764"}