Second commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.42 +/- 1.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40a54cc7d39546ec102c6af825077acc25a42df040a1ea440d6284a6bef4323a
|
3 |
+
size 108074
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eb87a1a6cb0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eb87a1a2a00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690792707746278818,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQKHHPlbzC7zR38g+QKHHPlbzC7zR38g+QKHHPlbzC7zR38g+QKHHPlbzC7zR38g+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1+J7P7sgCb/4g6i+Woe1PwZ82L4K4bw/eCtuvpRqfD8d4v4+G9XMP9R3iL8JjZY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]]",
|
38 |
+
"desired_goal": "[[ 0.98393005 -0.5356557 -0.32913184]\n [ 1.4181931 -0.42282122 1.4756176 ]\n [-0.2325877 0.98600125 0.49781886]\n [ 1.6002535 -1.0661569 1.176179 ]]",
|
39 |
+
"observation": "[[ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALUwQvgF8yT2hKJU+g2rzPfooEz5C6y8+DavpPL5heDvRhrc7AbwXvnR1DT7Okyg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.14091559 0.09838105 0.2913256 ]\n [ 0.1188555 0.143711 0.17179587]\n [ 0.02852395 0.00379001 0.00560079]\n [-0.14817812 0.13814336 0.16462633]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4c6FkV4kGMCUhpRSlIwBbJRLMowBdJRHQLbCtJ3PiUB1fZQoaAZoCWgPQwjG+DB72ZYRwJSGlFKUaBVLMmgWR0C2wpUnCwbEdX2UKGgGaAloD0MIkj6toj88IMCUhpRSlGgVSzJoFkdAtsJ1ELH+63V9lChoBmgJaA9DCIRJ8fEJmRPAlIaUUpRoFUsyaBZHQLbCVOwgTyt1fZQoaAZoCWgPQwhcctwpHawXwJSGlFKUaBVLMmgWR0C2wznhS9/SdX2UKGgGaAloD0MIVyHlJ9WuGcCUhpRSlGgVSzJoFkdAtsMaNFSbY3V9lChoBmgJaA9DCEVj7e9srwjAlIaUUpRoFUsyaBZHQLbC+jGkvbp1fZQoaAZoCWgPQwgqGmt/ZxsGwJSGlFKUaBVLMmgWR0C2wtnUhFEzdX2UKGgGaAloD0MIqU4Hsp46CsCUhpRSlGgVSzJoFkdAtsOnQrtmc3V9lChoBmgJaA9DCDpXlBKCNQfAlIaUUpRoFUsyaBZHQLbDh35vcah1fZQoaAZoCWgPQwg/An/4+c8HwJSGlFKUaBVLMmgWR0C2w2cnRb8ndX2UKGgGaAloD0MIDhR4J5/+CMCUhpRSlGgVSzJoFkdAtsNGrCFbmnV9lChoBmgJaA9DCBKkUuxoXALAlIaUUpRoFUsyaBZHQLbEJwMH8j11fZQoaAZoCWgPQwjzHJHvUhoTwJSGlFKUaBVLMmgWR0C2xAdBa9sadX2UKGgGaAloD0MIo6zfTEwHGcCUhpRSlGgVSzJoFkdAtsPnHMlkY3V9lChoBmgJaA9DCJSGGoUkoxPAlIaUUpRoFUsyaBZHQLbDxsNDtw91fZQoaAZoCWgPQwjO3a6XpogRwJSGlFKUaBVLMmgWR0C2xJzlDF6zdX2UKGgGaAloD0MI7NlzmZrUFcCUhpRSlGgVSzJoFkdAtsR9F4LThHV9lChoBmgJaA9DCGpsrwW9lxHAlIaUUpRoFUsyaBZHQLbEXL3bmEJ1fZQoaAZoCWgPQwiYv0LmyuADwJSGlFKUaBVLMmgWR0C2xDyQ5myxdX2UKGgGaAloD0MIVyO70jKyDcCUhpRSlGgVSzJoFkdAtsURsk6cRXV9lChoBmgJaA9DCIo5CDpadQbAlIaUUpRoFUsyaBZHQLbE8eYD1Xh1fZQoaAZoCWgPQwgviEhNu1gSwJSGlFKUaBVLMmgWR0C2xNGGVRk3dX2UKGgGaAloD0MIlIYahSQTDcCUhpRSlGgVSzJoFkdAtsSxG+bmVHV9lChoBmgJaA9DCOXuc3y0mA7AlIaUUpRoFUsyaBZHQLbFgl+EytV1fZQoaAZoCWgPQwgo1NNH4L8ZwJSGlFKUaBVLMmgWR0C2xWKV2Rq5dX2UKGgGaAloD0MIQq8/ic9dFsCUhpRSlGgVSzJoFkdAtsVCT3Zf2XV9lChoBmgJaA9DCG/VdaimpA7AlIaUUpRoFUsyaBZHQLbFIdvbXYl1fZQoaAZoCWgPQwiBlUOLbOcPwJSGlFKUaBVLMmgWR0C2xf5MQEpzdX2UKGgGaAloD0MITZ8dcF2hHcCUhpRSlGgVSzJoFkdAtsXevovBanV9lChoBmgJaA9DCJxsA3egrgTAlIaUUpRoFUsyaBZHQLbFvpRXOnl1fZQoaAZoCWgPQwj/PXjt0sYHwJSGlFKUaBVLMmgWR0C2xZ4X40uUdX2UKGgGaAloD0MIjpHsEWoGDMCUhpRSlGgVSzJoFkdAtsZqfBeok3V9lChoBmgJaA9DCIlBYOXQ0iDAlIaUUpRoFUsyaBZHQLbGSwUxmCl1fZQoaAZoCWgPQwineccpOhIHwJSGlFKUaBVLMmgWR0C2xirjghr4dX2UKGgGaAloD0MIWYgOgSPhBMCUhpRSlGgVSzJoFkdAtsYKcAimmHV9lChoBmgJaA9DCIfhI2JKJA7AlIaUUpRoFUsyaBZHQLbG1jY7JXB1fZQoaAZoCWgPQwgP1ZRkHU4MwJSGlFKUaBVLMmgWR0C2xrZng5zYdX2UKGgGaAloD0MIVvSHZp68GMCUhpRSlGgVSzJoFkdAtsaWB8QZoHV9lChoBmgJaA9DCO6TowBRgBrAlIaUUpRoFUsyaBZHQLbGdYr8R+V1fZQoaAZoCWgPQwjuCRLb3aMGwJSGlFKUaBVLMmgWR0C2x0dG/etTdX2UKGgGaAloD0MIL2zNVl4yGMCUhpRSlGgVSzJoFkdAtscnddmg8XV9lChoBmgJaA9DCBkg0QSKWA/AlIaUUpRoFUsyaBZHQLbHBylN1yN1fZQoaAZoCWgPQwi6aMh4lGoZwJSGlFKUaBVLMmgWR0C2xuaqOtGNdX2UKGgGaAloD0MIzZNrCmR2CMCUhpRSlGgVSzJoFkdAtseyGqPwNXV9lChoBmgJaA9DCLznwHKETAzAlIaUUpRoFUsyaBZHQLbHkmV7hNx1fZQoaAZoCWgPQwgLmwEuyNYKwJSGlFKUaBVLMmgWR0C2x3IPTXrddX2UKGgGaAloD0MIkKM5svLLB8CUhpRSlGgVSzJoFkdAtsdRjZtelnV9lChoBmgJaA9DCE0xB0FHSw7AlIaUUpRoFUsyaBZHQLbIImyxA0N1fZQoaAZoCWgPQwgyzAna5LARwJSGlFKUaBVLMmgWR0C2yAKi48U3dX2UKGgGaAloD0MImwMEc/S4BMCUhpRSlGgVSzJoFkdAtsfiU0Nz83V9lChoBmgJaA9DCFw+kpIehgrAlIaUUpRoFUsyaBZHQLbHwd+5OJt1fZQoaAZoCWgPQwgC8bp+we4MwJSGlFKUaBVLMmgWR0C2yJE34sVddX2UKGgGaAloD0MI4JwRpb0BDsCUhpRSlGgVSzJoFkdAtshxW+49YHV9lChoBmgJaA9DCDkOvFruDAvAlIaUUpRoFUsyaBZHQLbIUPuogmt1fZQoaAZoCWgPQwineccpOhIKwJSGlFKUaBVLMmgWR0C2yDCIpH7QdX2UKGgGaAloD0MIoDU//tKSFcCUhpRSlGgVSzJoFkdAtsj7vfCQ93V9lChoBmgJaA9DCInwL4LGPBbAlIaUUpRoFUsyaBZHQLbI2/dqL0l1fZQoaAZoCWgPQwj4+e/Ba3cIwJSGlFKUaBVLMmgWR0C2yLujqOcUdX2UKGgGaAloD0MIge1gxD5BC8CUhpRSlGgVSzJoFkdAtsibIgeRxXV9lChoBmgJaA9DCJ4JTRJL+hDAlIaUUpRoFUsyaBZHQLbJa36Q/5d1fZQoaAZoCWgPQwhauoJtxCMWwJSGlFKUaBVLMmgWR0C2yUvAfuCxdX2UKGgGaAloD0MIKJzdWiZTEcCUhpRSlGgVSzJoFkdAtskrfsNUfnV9lChoBmgJaA9DCNnNjH40XArAlIaUUpRoFUsyaBZHQLbJCwljVhF1fZQoaAZoCWgPQwjJVwIpsYsKwJSGlFKUaBVLMmgWR0C2ydv863iJdX2UKGgGaAloD0MIfa8hOC7zEMCUhpRSlGgVSzJoFkdAtsm8IF/x2HV9lChoBmgJaA9DCHiazHhbGRfAlIaUUpRoFUsyaBZHQLbJm8D0UXZ1fZQoaAZoCWgPQwhSQxuADSgNwJSGlFKUaBVLMmgWR0C2yXtBjWkKdX2UKGgGaAloD0MIhEvHnGeMF8CUhpRSlGgVSzJoFkdAtspLrPdEcHV9lChoBmgJaA9DCKotdZDX8x/AlIaUUpRoFUsyaBZHQLbKK9jPOY91fZQoaAZoCWgPQwhWDFcHQDwCwJSGlFKUaBVLMmgWR0C2yguAqd6LdX2UKGgGaAloD0MIAma+g5+4FcCUhpRSlGgVSzJoFkdAtsnq9kBjnXV9lChoBmgJaA9DCKYPXVDfEgbAlIaUUpRoFUsyaBZHQLbKuCNjsld1fZQoaAZoCWgPQwiLic3HtSEJwJSGlFKUaBVLMmgWR0C2yphc3VCpdX2UKGgGaAloD0MISUxQw7dAFcCUhpRSlGgVSzJoFkdAtsp4CLdepnV9lChoBmgJaA9DCE/JObGHlgnAlIaUUpRoFUsyaBZHQLbKV4gzP8h1fZQoaAZoCWgPQwgYIxKFlvUOwJSGlFKUaBVLMmgWR0C2yyc5XEIgdX2UKGgGaAloD0MIcceb/BYdBcCUhpRSlGgVSzJoFkdAtssHeUILPXV9lChoBmgJaA9DCEM6PITxIxHAlIaUUpRoFUsyaBZHQLbK5yEL6UJ1fZQoaAZoCWgPQwh4R8Zq858HwJSGlFKUaBVLMmgWR0C2ysarmyPddX2UKGgGaAloD0MIDykGSDTxEcCUhpRSlGgVSzJoFkdAtsuTiADq4nV9lChoBmgJaA9DCNkh/mFLzwvAlIaUUpRoFUsyaBZHQLbLc8CPp6h1fZQoaAZoCWgPQwhFnbmHhE8IwJSGlFKUaBVLMmgWR0C2y1OX7cfvdX2UKGgGaAloD0MImIi3zr99CMCUhpRSlGgVSzJoFkdAtsszEqDsdHV9lChoBmgJaA9DCJQWLquwGQTAlIaUUpRoFUsyaBZHQLbMBeBg/kh1fZQoaAZoCWgPQwhmS1ZFuAkCwJSGlFKUaBVLMmgWR0C2y+YMz/IbdX2UKGgGaAloD0MIAvVm1HyVH8CUhpRSlGgVSzJoFkdAtsvFrcj7h3V9lChoBmgJaA9DCEhS0sPQShfAlIaUUpRoFUsyaBZHQLbLpTpxFRZ1fZQoaAZoCWgPQwgC9Pv+zWsMwJSGlFKUaBVLMmgWR0C2zHMvmHQAdX2UKGgGaAloD0MI1QW8zLBxEMCUhpRSlGgVSzJoFkdAtsxTYJ3PiXV9lChoBmgJaA9DCHufqkIDUQbAlIaUUpRoFUsyaBZHQLbMMwVj7Q91fZQoaAZoCWgPQwgdPulEgqkPwJSGlFKUaBVLMmgWR0C2zBJ/XoTxdX2UKGgGaAloD0MIpDmy8svgBMCUhpRSlGgVSzJoFkdAtszdhG6PKnV9lChoBmgJaA9DCNfep6rQwAvAlIaUUpRoFUsyaBZHQLbMvelsP8R1fZQoaAZoCWgPQwjIW65+bPIRwJSGlFKUaBVLMmgWR0C2zJ4RVZLadX2UKGgGaAloD0MIRnpRu1/FDsCUhpRSlGgVSzJoFkdAtsx+By0a63V9lChoBmgJaA9DCE6Zm29ENxDAlIaUUpRoFUsyaBZHQLbNjO6unuR1fZQoaAZoCWgPQwhFSUikbdwHwJSGlFKUaBVLMmgWR0C2zW19KEnLdX2UKGgGaAloD0MIHXQJh97CEcCUhpRSlGgVSzJoFkdAts1NjTa0yHV9lChoBmgJaA9DCI1BJ4QO6hXAlIaUUpRoFUsyaBZHQLbNLX9BKL91ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1c960ac6752c5031273e896415204eaaa8847e2fcec1ef8d3a1f6095d1d3955
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77535b2cf4d03ddb15fe524f3120d62443f9728b742705e9bf9c155b52f55ac3
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7801e7935c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780183cf0040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690528856323955333, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA74K7PmIkgz3mKB4/74K7PmIkgz3mKB4/74K7PmIkgz3mKB4/74K7PmIkgz3mKB4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWe+pv8s2dD7zxEy/DrW+P5Vx3767HTS/Qo6Tv+OFhL+swai+/vu4v+oFQz/0PB+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADvgrs+YiSDPeYoHj8LvzY9l66zO7jeID3vgrs+YiSDPeYoHj8LvzY9l66zO7jeID3vgrs+YiSDPeYoHj8LvzY9l66zO7jeID3vgrs+YiSDPeYoHj8LvzY9l66zO7jeID2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36623332 0.06403424 0.61781156]\n [0.36623332 0.06403424 0.61781156]\n [0.36623332 0.06403424 0.61781156]\n [0.36623332 0.06403424 0.61781156]]", "desired_goal": "[[-1.3276168 0.23849027 -0.7998802 ]\n [ 1.4899004 -0.43641344 -0.70357865]\n [-1.1527789 -1.0353359 -0.3296026 ]\n [-1.4451902 0.761809 -0.6220238 ]]", "observation": "[[0.36623332 0.06403424 0.61781156 0.04461579 0.00548346 0.0392749 ]\n [0.36623332 0.06403424 0.61781156 0.04461579 0.00548346 0.0392749 ]\n [0.36623332 0.06403424 0.61781156 0.04461579 0.00548346 0.0392749 ]\n [0.36623332 0.06403424 0.61781156 0.04461579 0.00548346 0.0392749 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAos/svVuU5jyldGI+D1p2PKLrOrsz+1g+OnbFvOzX/j2clh4+eUWrPdevDj5ekDE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1156304 0.02814691 0.22114809]\n [ 0.01503612 -0.00285218 0.21189575]\n [-0.02410423 0.12443528 0.1548714 ]\n [ 0.0836286 0.13934265 0.17340228]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9fOmIhVONcCUhpRSlIwBbJRLMowBdJRHQKaAtkBCD291fZQoaAZoCWgPQwiHokCfyBMawJSGlFKUaBVLMmgWR0CmgHqCQLeAdX2UKGgGaAloD0MIlbn5RnQ/K8CUhpRSlGgVSzJoFkdApoA9GCqZMXV9lChoBmgJaA9DCI/jh0oj1iDAlIaUUpRoFUsyaBZHQKZ//7WNFSd1fZQoaAZoCWgPQwgnwLD8+WYSwJSGlFKUaBVLMmgWR0CmgeM3AEdOdX2UKGgGaAloD0MIfnTqymfpF8CUhpRSlGgVSzJoFkdApoGnn8sMAnV9lChoBmgJaA9DCJLPK556/CLAlIaUUpRoFUsyaBZHQKaBaoGY8dR1fZQoaAZoCWgPQwhHVn4ZjKEewJSGlFKUaBVLMmgWR0CmgSz6SDAadX2UKGgGaAloD0MI8Q9bejS1JcCUhpRSlGgVSzJoFkdApoLoJb+tKnV9lChoBmgJaA9DCOCe508bzSHAlIaUUpRoFUsyaBZHQKaCrD+irT91fZQoaAZoCWgPQwghByXMtD0UwJSGlFKUaBVLMmgWR0Cmgm6wljVhdX2UKGgGaAloD0MIy6Kwi6J3IMCUhpRSlGgVSzJoFkdApoIxUPxx1nV9lChoBmgJaA9DCNffEoB/Wh3AlIaUUpRoFUsyaBZHQKaD4mce8wp1fZQoaAZoCWgPQwgr24e85QohwJSGlFKUaBVLMmgWR0Cmg6awMYuTdX2UKGgGaAloD0MI2h8ot+0rHsCUhpRSlGgVSzJoFkdApoNpNsWO63V9lChoBmgJaA9DCPThWYKMwBPAlIaUUpRoFUsyaBZHQKaDK+TvAoJ1fZQoaAZoCWgPQwhu3c1THaIhwJSGlFKUaBVLMmgWR0CmhO+IVM24dX2UKGgGaAloD0MIms5OBkc5IMCUhpRSlGgVSzJoFkdApoSz5uZTh3V9lChoBmgJaA9DCNSAQdKnBRXAlIaUUpRoFUsyaBZHQKaEdnbqQil1fZQoaAZoCWgPQwjLhcq/lkcRwJSGlFKUaBVLMmgWR0CmhDnJDE3sdX2UKGgGaAloD0MIMGZLVkXoGsCUhpRSlGgVSzJoFkdApoX+butwJnV9lChoBmgJaA9DCNtrQe+NYSLAlIaUUpRoFUsyaBZHQKaFwtnwob51fZQoaAZoCWgPQwin6Egu/2EfwJSGlFKUaBVLMmgWR0CmhYVVPva2dX2UKGgGaAloD0MIL4fddwxvDcCUhpRSlGgVSzJoFkdApoVISxqwhXV9lChoBmgJaA9DCPW+8bVnfifAlIaUUpRoFUsyaBZHQKaHAz2vjfh1fZQoaAZoCWgPQwgaFM0DWOQhwJSGlFKUaBVLMmgWR0CmhsdXko4NdX2UKGgGaAloD0MIPs+fNqpTIcCUhpRSlGgVSzJoFkdApoaKWiUPhHV9lChoBmgJaA9DCPLqHAOyDyPAlIaUUpRoFUsyaBZHQKaGTO1v2oN1fZQoaAZoCWgPQwhQ/u4dNSYRwJSGlFKUaBVLMmgWR0CmiBTfrKNidX2UKGgGaAloD0MI/DTuzW8wJMCUhpRSlGgVSzJoFkdApofZLoOhCnV9lChoBmgJaA9DCNnr3R/vVRbAlIaUUpRoFUsyaBZHQKaHnBInSfF1fZQoaAZoCWgPQwhk6xnCMWMgwJSGlFKUaBVLMmgWR0Cmh163y7PIdX2UKGgGaAloD0MINEsC1NTyHMCUhpRSlGgVSzJoFkdApokqH0se4nV9lChoBmgJaA9DCBBB1ejVgBPAlIaUUpRoFUsyaBZHQKaI7v0AcT91fZQoaAZoCWgPQwj51of1Rm0TwJSGlFKUaBVLMmgWR0CmiLHD7655dX2UKGgGaAloD0MIfuIA+n3/GcCUhpRSlGgVSzJoFkdApoh0P8Q7LnV9lChoBmgJaA9DCK1oc5zbxB3AlIaUUpRoFUsyaBZHQKaKU4QSSNh1fZQoaAZoCWgPQwhrRDAOLl0JwJSGlFKUaBVLMmgWR0CmihhufmLcdX2UKGgGaAloD0MIrI2xE17SI8CUhpRSlGgVSzJoFkdApona7ulXR3V9lChoBmgJaA9DCKdaC7PQjgjAlIaUUpRoFUsyaBZHQKaJneUpuuR1fZQoaAZoCWgPQwiT407pYP0NwJSGlFKUaBVLMmgWR0Cmi3dE1EVndX2UKGgGaAloD0MI2IAIceXcFsCUhpRSlGgVSzJoFkdApos7YdyT6nV9lChoBmgJaA9DCBr8/WK2VBvAlIaUUpRoFUsyaBZHQKaK/gm7aqV1fZQoaAZoCWgPQwjzy2CMSLQSwJSGlFKUaBVLMmgWR0CmisERradudX2UKGgGaAloD0MIFJUNayrbEsCUhpRSlGgVSzJoFkdApoyVMyrPt3V9lChoBmgJaA9DCFyq0hbXGBnAlIaUUpRoFUsyaBZHQKaMWY0l7dB1fZQoaAZoCWgPQwj1TC8xlkkZwJSGlFKUaBVLMmgWR0CmjBwmu1WsdX2UKGgGaAloD0MI5dAi2/meJMCUhpRSlGgVSzJoFkdApovetCAtnXV9lChoBmgJaA9DCCeloNtL2iTAlIaUUpRoFUsyaBZHQKaNj4nF5v91fZQoaAZoCWgPQwiV8loJ3XUhwJSGlFKUaBVLMmgWR0CmjVR6fJ3gdX2UKGgGaAloD0MIs2FNZVHQIcCUhpRSlGgVSzJoFkdApo0XGACnxnV9lChoBmgJaA9DCPdzCvKzcRrAlIaUUpRoFUsyaBZHQKaM2Y0l7dB1fZQoaAZoCWgPQwh9l1KXjGMUwJSGlFKUaBVLMmgWR0CmjqOU+s5odX2UKGgGaAloD0MINgLxun7BCcCUhpRSlGgVSzJoFkdApo5n4CZF5XV9lChoBmgJaA9DCFnbFI+LOhzAlIaUUpRoFUsyaBZHQKaOKl5WzWx1fZQoaAZoCWgPQwjeAZ60cMEhwJSGlFKUaBVLMmgWR0CmjezRIBikdX2UKGgGaAloD0MICeBm8WLRFsCUhpRSlGgVSzJoFkdApo+amVJL/XV9lChoBmgJaA9DCDJ2wktwCh7AlIaUUpRoFUsyaBZHQKaPXtVrAQB1fZQoaAZoCWgPQwis/Z3t0WscwJSGlFKUaBVLMmgWR0CmjyFKkEcLdX2UKGgGaAloD0MIQx7BjZRVJMCUhpRSlGgVSzJoFkdApo7jyMDOknV9lChoBmgJaA9DCEGbHD7pzCDAlIaUUpRoFUsyaBZHQKaQrXK8tf51fZQoaAZoCWgPQwhBgAwdO1gRwJSGlFKUaBVLMmgWR0CmkHG5DqnndX2UKGgGaAloD0MIQYNNnUflJsCUhpRSlGgVSzJoFkdAppA0TDfm93V9lChoBmgJaA9DCNxI2SJp9xLAlIaUUpRoFUsyaBZHQKaP9tix3V11fZQoaAZoCWgPQwgXY2Adx98jwJSGlFKUaBVLMmgWR0CmkbcIJJGwdX2UKGgGaAloD0MIxlIkXwksIsCUhpRSlGgVSzJoFkdAppF7FfiPyXV9lChoBmgJaA9DCAiT4uMTwhXAlIaUUpRoFUsyaBZHQKaRPdi2Dxt1fZQoaAZoCWgPQwhz9Pi9TR8HwJSGlFKUaBVLMmgWR0CmkQExIre7dX2UKGgGaAloD0MIHt0Ii4qIE8CUhpRSlGgVSzJoFkdAppL3CXQdCHV9lChoBmgJaA9DCMKIfQIoZhfAlIaUUpRoFUsyaBZHQKaSvAY51eV1fZQoaAZoCWgPQwhffNEeLzQfwJSGlFKUaBVLMmgWR0Cmkn8feUILdX2UKGgGaAloD0MI81Zdh2o6GsCUhpRSlGgVSzJoFkdAppJCLbYbsHV9lChoBmgJaA9DCJsDBHP0UCLAlIaUUpRoFUsyaBZHQKaUoH0K7Zp1fZQoaAZoCWgPQwifO8H+6/wUwJSGlFKUaBVLMmgWR0CmlGYoZydXdX2UKGgGaAloD0MIpivYRjxRIMCUhpRSlGgVSzJoFkdAppQpnSOR1XV9lChoBmgJaA9DCJyk+WNa+wzAlIaUUpRoFUsyaBZHQKaT7TfBN211fZQoaAZoCWgPQwjWWMLaGPsfwJSGlFKUaBVLMmgWR0CmlmPCl7+ldX2UKGgGaAloD0MI0/pbAvC/FMCUhpRSlGgVSzJoFkdAppYpesxO+XV9lChoBmgJaA9DCPJbdLLU2hfAlIaUUpRoFUsyaBZHQKaV7JkoWpJ1fZQoaAZoCWgPQwitTzkmi+sZwJSGlFKUaBVLMmgWR0CmlbAV45cUdX2UKGgGaAloD0MIEsKjjSPmFsCUhpRSlGgVSzJoFkdAppgYHs1KoXV9lChoBmgJaA9DCB3HD5VGDCHAlIaUUpRoFUsyaBZHQKaX3Xd0q6R1fZQoaAZoCWgPQwhY4gFlUz4YwJSGlFKUaBVLMmgWR0Cml6Dej2zwdX2UKGgGaAloD0MIA3tMpDQrIsCUhpRSlGgVSzJoFkdAppdkO3DvVnV9lChoBmgJaA9DCOpae5+qchTAlIaUUpRoFUsyaBZHQKaZuySmqHZ1fZQoaAZoCWgPQwibAMPy56sfwJSGlFKUaBVLMmgWR0CmmX9Ynv2HdX2UKGgGaAloD0MIZ2FPO/yNJMCUhpRSlGgVSzJoFkdApplB/ZuhsnV9lChoBmgJaA9DCBBaD18m8iDAlIaUUpRoFUsyaBZHQKaZBLjghr51fZQoaAZoCWgPQwhSfHxCdhYmwJSGlFKUaBVLMmgWR0CmmredbxEwdX2UKGgGaAloD0MIP8bctYQ8F8CUhpRSlGgVSzJoFkdAppp8bWEsa3V9lChoBmgJaA9DCEP+mUF8uCDAlIaUUpRoFUsyaBZHQKaaPyDIzWR1fZQoaAZoCWgPQwgiMxe4PPYbwJSGlFKUaBVLMmgWR0CmmgHMMZxadX2UKGgGaAloD0MIEFzlCYTVIsCUhpRSlGgVSzJoFkdAppu8n/kvK3V9lChoBmgJaA9DCFK5iVqaAyDAlIaUUpRoFUsyaBZHQKabgO/+Kj11fZQoaAZoCWgPQwiqC3iZYdMewJSGlFKUaBVLMmgWR0Cmm0N21UlzdX2UKGgGaAloD0MIO8PUljqYHMCUhpRSlGgVSzJoFkdAppsGEZiuuHV9lChoBmgJaA9DCM09JHzvLx3AlIaUUpRoFUsyaBZHQKac3Id2gWd1fZQoaAZoCWgPQwjaAdcVM1IRwJSGlFKUaBVLMmgWR0CmnKEJ8fFKdX2UKGgGaAloD0MIP8kdNpHhIMCUhpRSlGgVSzJoFkdAppxkP+XJHXV9lChoBmgJaA9DCDFCeLRxRA/AlIaUUpRoFUsyaBZHQKacJ+OwPiF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eb87a1a6cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb87a1a2a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690792707746278818, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQKHHPlbzC7zR38g+QKHHPlbzC7zR38g+QKHHPlbzC7zR38g+QKHHPlbzC7zR38g+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1+J7P7sgCb/4g6i+Woe1PwZ82L4K4bw/eCtuvpRqfD8d4v4+G9XMP9R3iL8JjZY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTtAocc+VvMLvNHfyD5vICQ7EjUpui52rTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]\n [ 0.3899021 -0.0085419 0.39233258]]", "desired_goal": "[[ 0.98393005 -0.5356557 -0.32913184]\n [ 1.4181931 -0.42282122 1.4756176 ]\n [-0.2325877 0.98600125 0.49781886]\n [ 1.6002535 -1.0661569 1.176179 ]]", "observation": "[[ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]\n [ 0.3899021 -0.0085419 0.39233258 0.00250437 -0.00064547 0.00529363]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALUwQvgF8yT2hKJU+g2rzPfooEz5C6y8+DavpPL5heDvRhrc7AbwXvnR1DT7Okyg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14091559 0.09838105 0.2913256 ]\n [ 0.1188555 0.143711 0.17179587]\n [ 0.02852395 0.00379001 0.00560079]\n [-0.14817812 0.13814336 0.16462633]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4c6FkV4kGMCUhpRSlIwBbJRLMowBdJRHQLbCtJ3PiUB1fZQoaAZoCWgPQwjG+DB72ZYRwJSGlFKUaBVLMmgWR0C2wpUnCwbEdX2UKGgGaAloD0MIkj6toj88IMCUhpRSlGgVSzJoFkdAtsJ1ELH+63V9lChoBmgJaA9DCIRJ8fEJmRPAlIaUUpRoFUsyaBZHQLbCVOwgTyt1fZQoaAZoCWgPQwhcctwpHawXwJSGlFKUaBVLMmgWR0C2wznhS9/SdX2UKGgGaAloD0MIVyHlJ9WuGcCUhpRSlGgVSzJoFkdAtsMaNFSbY3V9lChoBmgJaA9DCEVj7e9srwjAlIaUUpRoFUsyaBZHQLbC+jGkvbp1fZQoaAZoCWgPQwgqGmt/ZxsGwJSGlFKUaBVLMmgWR0C2wtnUhFEzdX2UKGgGaAloD0MIqU4Hsp46CsCUhpRSlGgVSzJoFkdAtsOnQrtmc3V9lChoBmgJaA9DCDpXlBKCNQfAlIaUUpRoFUsyaBZHQLbDh35vcah1fZQoaAZoCWgPQwg/An/4+c8HwJSGlFKUaBVLMmgWR0C2w2cnRb8ndX2UKGgGaAloD0MIDhR4J5/+CMCUhpRSlGgVSzJoFkdAtsNGrCFbmnV9lChoBmgJaA9DCBKkUuxoXALAlIaUUpRoFUsyaBZHQLbEJwMH8j11fZQoaAZoCWgPQwjzHJHvUhoTwJSGlFKUaBVLMmgWR0C2xAdBa9sadX2UKGgGaAloD0MIo6zfTEwHGcCUhpRSlGgVSzJoFkdAtsPnHMlkY3V9lChoBmgJaA9DCJSGGoUkoxPAlIaUUpRoFUsyaBZHQLbDxsNDtw91fZQoaAZoCWgPQwjO3a6XpogRwJSGlFKUaBVLMmgWR0C2xJzlDF6zdX2UKGgGaAloD0MI7NlzmZrUFcCUhpRSlGgVSzJoFkdAtsR9F4LThHV9lChoBmgJaA9DCGpsrwW9lxHAlIaUUpRoFUsyaBZHQLbEXL3bmEJ1fZQoaAZoCWgPQwiYv0LmyuADwJSGlFKUaBVLMmgWR0C2xDyQ5myxdX2UKGgGaAloD0MIVyO70jKyDcCUhpRSlGgVSzJoFkdAtsURsk6cRXV9lChoBmgJaA9DCIo5CDpadQbAlIaUUpRoFUsyaBZHQLbE8eYD1Xh1fZQoaAZoCWgPQwgviEhNu1gSwJSGlFKUaBVLMmgWR0C2xNGGVRk3dX2UKGgGaAloD0MIlIYahSQTDcCUhpRSlGgVSzJoFkdAtsSxG+bmVHV9lChoBmgJaA9DCOXuc3y0mA7AlIaUUpRoFUsyaBZHQLbFgl+EytV1fZQoaAZoCWgPQwgo1NNH4L8ZwJSGlFKUaBVLMmgWR0C2xWKV2Rq5dX2UKGgGaAloD0MIQq8/ic9dFsCUhpRSlGgVSzJoFkdAtsVCT3Zf2XV9lChoBmgJaA9DCG/VdaimpA7AlIaUUpRoFUsyaBZHQLbFIdvbXYl1fZQoaAZoCWgPQwiBlUOLbOcPwJSGlFKUaBVLMmgWR0C2xf5MQEpzdX2UKGgGaAloD0MITZ8dcF2hHcCUhpRSlGgVSzJoFkdAtsXevovBanV9lChoBmgJaA9DCJxsA3egrgTAlIaUUpRoFUsyaBZHQLbFvpRXOnl1fZQoaAZoCWgPQwj/PXjt0sYHwJSGlFKUaBVLMmgWR0C2xZ4X40uUdX2UKGgGaAloD0MIjpHsEWoGDMCUhpRSlGgVSzJoFkdAtsZqfBeok3V9lChoBmgJaA9DCIlBYOXQ0iDAlIaUUpRoFUsyaBZHQLbGSwUxmCl1fZQoaAZoCWgPQwineccpOhIHwJSGlFKUaBVLMmgWR0C2xirjghr4dX2UKGgGaAloD0MIWYgOgSPhBMCUhpRSlGgVSzJoFkdAtsYKcAimmHV9lChoBmgJaA9DCIfhI2JKJA7AlIaUUpRoFUsyaBZHQLbG1jY7JXB1fZQoaAZoCWgPQwgP1ZRkHU4MwJSGlFKUaBVLMmgWR0C2xrZng5zYdX2UKGgGaAloD0MIVvSHZp68GMCUhpRSlGgVSzJoFkdAtsaWB8QZoHV9lChoBmgJaA9DCO6TowBRgBrAlIaUUpRoFUsyaBZHQLbGdYr8R+V1fZQoaAZoCWgPQwjuCRLb3aMGwJSGlFKUaBVLMmgWR0C2x0dG/etTdX2UKGgGaAloD0MIL2zNVl4yGMCUhpRSlGgVSzJoFkdAtscnddmg8XV9lChoBmgJaA9DCBkg0QSKWA/AlIaUUpRoFUsyaBZHQLbHBylN1yN1fZQoaAZoCWgPQwi6aMh4lGoZwJSGlFKUaBVLMmgWR0C2xuaqOtGNdX2UKGgGaAloD0MIzZNrCmR2CMCUhpRSlGgVSzJoFkdAtseyGqPwNXV9lChoBmgJaA9DCLznwHKETAzAlIaUUpRoFUsyaBZHQLbHkmV7hNx1fZQoaAZoCWgPQwgLmwEuyNYKwJSGlFKUaBVLMmgWR0C2x3IPTXrddX2UKGgGaAloD0MIkKM5svLLB8CUhpRSlGgVSzJoFkdAtsdRjZtelnV9lChoBmgJaA9DCE0xB0FHSw7AlIaUUpRoFUsyaBZHQLbIImyxA0N1fZQoaAZoCWgPQwgyzAna5LARwJSGlFKUaBVLMmgWR0C2yAKi48U3dX2UKGgGaAloD0MImwMEc/S4BMCUhpRSlGgVSzJoFkdAtsfiU0Nz83V9lChoBmgJaA9DCFw+kpIehgrAlIaUUpRoFUsyaBZHQLbHwd+5OJt1fZQoaAZoCWgPQwgC8bp+we4MwJSGlFKUaBVLMmgWR0C2yJE34sVddX2UKGgGaAloD0MI4JwRpb0BDsCUhpRSlGgVSzJoFkdAtshxW+49YHV9lChoBmgJaA9DCDkOvFruDAvAlIaUUpRoFUsyaBZHQLbIUPuogmt1fZQoaAZoCWgPQwineccpOhIKwJSGlFKUaBVLMmgWR0C2yDCIpH7QdX2UKGgGaAloD0MIoDU//tKSFcCUhpRSlGgVSzJoFkdAtsj7vfCQ93V9lChoBmgJaA9DCInwL4LGPBbAlIaUUpRoFUsyaBZHQLbI2/dqL0l1fZQoaAZoCWgPQwj4+e/Ba3cIwJSGlFKUaBVLMmgWR0C2yLujqOcUdX2UKGgGaAloD0MIge1gxD5BC8CUhpRSlGgVSzJoFkdAtsibIgeRxXV9lChoBmgJaA9DCJ4JTRJL+hDAlIaUUpRoFUsyaBZHQLbJa36Q/5d1fZQoaAZoCWgPQwhauoJtxCMWwJSGlFKUaBVLMmgWR0C2yUvAfuCxdX2UKGgGaAloD0MIKJzdWiZTEcCUhpRSlGgVSzJoFkdAtskrfsNUfnV9lChoBmgJaA9DCNnNjH40XArAlIaUUpRoFUsyaBZHQLbJCwljVhF1fZQoaAZoCWgPQwjJVwIpsYsKwJSGlFKUaBVLMmgWR0C2ydv863iJdX2UKGgGaAloD0MIfa8hOC7zEMCUhpRSlGgVSzJoFkdAtsm8IF/x2HV9lChoBmgJaA9DCHiazHhbGRfAlIaUUpRoFUsyaBZHQLbJm8D0UXZ1fZQoaAZoCWgPQwhSQxuADSgNwJSGlFKUaBVLMmgWR0C2yXtBjWkKdX2UKGgGaAloD0MIhEvHnGeMF8CUhpRSlGgVSzJoFkdAtspLrPdEcHV9lChoBmgJaA9DCKotdZDX8x/AlIaUUpRoFUsyaBZHQLbKK9jPOY91fZQoaAZoCWgPQwhWDFcHQDwCwJSGlFKUaBVLMmgWR0C2yguAqd6LdX2UKGgGaAloD0MIAma+g5+4FcCUhpRSlGgVSzJoFkdAtsnq9kBjnXV9lChoBmgJaA9DCKYPXVDfEgbAlIaUUpRoFUsyaBZHQLbKuCNjsld1fZQoaAZoCWgPQwiLic3HtSEJwJSGlFKUaBVLMmgWR0C2yphc3VCpdX2UKGgGaAloD0MISUxQw7dAFcCUhpRSlGgVSzJoFkdAtsp4CLdepnV9lChoBmgJaA9DCE/JObGHlgnAlIaUUpRoFUsyaBZHQLbKV4gzP8h1fZQoaAZoCWgPQwgYIxKFlvUOwJSGlFKUaBVLMmgWR0C2yyc5XEIgdX2UKGgGaAloD0MIcceb/BYdBcCUhpRSlGgVSzJoFkdAtssHeUILPXV9lChoBmgJaA9DCEM6PITxIxHAlIaUUpRoFUsyaBZHQLbK5yEL6UJ1fZQoaAZoCWgPQwh4R8Zq858HwJSGlFKUaBVLMmgWR0C2ysarmyPddX2UKGgGaAloD0MIDykGSDTxEcCUhpRSlGgVSzJoFkdAtsuTiADq4nV9lChoBmgJaA9DCNkh/mFLzwvAlIaUUpRoFUsyaBZHQLbLc8CPp6h1fZQoaAZoCWgPQwhFnbmHhE8IwJSGlFKUaBVLMmgWR0C2y1OX7cfvdX2UKGgGaAloD0MImIi3zr99CMCUhpRSlGgVSzJoFkdAtsszEqDsdHV9lChoBmgJaA9DCJQWLquwGQTAlIaUUpRoFUsyaBZHQLbMBeBg/kh1fZQoaAZoCWgPQwhmS1ZFuAkCwJSGlFKUaBVLMmgWR0C2y+YMz/IbdX2UKGgGaAloD0MIAvVm1HyVH8CUhpRSlGgVSzJoFkdAtsvFrcj7h3V9lChoBmgJaA9DCEhS0sPQShfAlIaUUpRoFUsyaBZHQLbLpTpxFRZ1fZQoaAZoCWgPQwgC9Pv+zWsMwJSGlFKUaBVLMmgWR0C2zHMvmHQAdX2UKGgGaAloD0MI1QW8zLBxEMCUhpRSlGgVSzJoFkdAtsxTYJ3PiXV9lChoBmgJaA9DCHufqkIDUQbAlIaUUpRoFUsyaBZHQLbMMwVj7Q91fZQoaAZoCWgPQwgdPulEgqkPwJSGlFKUaBVLMmgWR0C2zBJ/XoTxdX2UKGgGaAloD0MIpDmy8svgBMCUhpRSlGgVSzJoFkdAtszdhG6PKnV9lChoBmgJaA9DCNfep6rQwAvAlIaUUpRoFUsyaBZHQLbMvelsP8R1fZQoaAZoCWgPQwjIW65+bPIRwJSGlFKUaBVLMmgWR0C2zJ4RVZLadX2UKGgGaAloD0MIRnpRu1/FDsCUhpRSlGgVSzJoFkdAtsx+By0a63V9lChoBmgJaA9DCE6Zm29ENxDAlIaUUpRoFUsyaBZHQLbNjO6unuR1fZQoaAZoCWgPQwhFSUikbdwHwJSGlFKUaBVLMmgWR0C2zW19KEnLdX2UKGgGaAloD0MIHXQJh97CEcCUhpRSlGgVSzJoFkdAts1NjTa0yHV9lChoBmgJaA9DCI1BJ4QO6hXAlIaUUpRoFUsyaBZHQLbNLX9BKL91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.4188585145166144, "std_reward": 1.425974107508079, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T10:22:55.980396"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9292d61be1fe6d6a51172d411a3ba3a4841c153ee919e77827670ade36ca3ec
|
3 |
size 2387
|