johnjim0816
add all benchmarks
62e03a2
raw
history blame
5.76 kB
2023-04-04 21:24:50 - r - INFO: - Hyperparameters:
2023-04-04 21:24:50 - r - INFO: - ================================================================================
2023-04-04 21:24:50 - r - INFO: - Name Value Type
2023-04-04 21:24:50 - r - INFO: - env_name MountainCar-v0 <class 'str'>
2023-04-04 21:24:50 - r - INFO: - new_step_api 1 <class 'bool'>
2023-04-04 21:24:50 - r - INFO: - wrapper None <class 'str'>
2023-04-04 21:24:50 - r - INFO: - render 1 <class 'bool'>
2023-04-04 21:24:50 - r - INFO: - algo_name DQN <class 'str'>
2023-04-04 21:24:50 - r - INFO: - mode test <class 'str'>
2023-04-04 21:24:50 - r - INFO: - seed 3 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - device cpu <class 'str'>
2023-04-04 21:24:50 - r - INFO: - train_eps 200 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - test_eps 20 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - eval_eps 10 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - eval_per_episode 5 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - max_steps 200 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - load_checkpoint 1 <class 'bool'>
2023-04-04 21:24:50 - r - INFO: - load_path Train_MountainCar-v0_DQN_20230404-211546 <class 'str'>
2023-04-04 21:24:50 - r - INFO: - show_fig 0 <class 'bool'>
2023-04-04 21:24:50 - r - INFO: - save_fig 1 <class 'bool'>
2023-04-04 21:24:50 - r - INFO: - epsilon_start 0.99 <class 'float'>
2023-04-04 21:24:50 - r - INFO: - epsilon_end 0.01 <class 'float'>
2023-04-04 21:24:50 - r - INFO: - epsilon_decay 800 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - gamma 0.99 <class 'float'>
2023-04-04 21:24:50 - r - INFO: - lr 0.01 <class 'float'>
2023-04-04 21:24:50 - r - INFO: - buffer_size 40000 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - batch_size 64 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - target_update 4 <class 'int'>
2023-04-04 21:24:50 - r - INFO: - value_layers [{'layer_type': 'linear', 'layer_dim': ['n_states', 256], 'activation': 'relu'}, {'layer_type': 'linear', 'layer_dim': [256, 256], 'activation': 'relu'}, {'layer_type': 'linear', 'layer_dim': [256, 'n_actions'], 'activation': 'none'}] <class 'str'>
2023-04-04 21:24:50 - r - INFO: - task_dir /home/PJLAB/geyuhong/rl-tutorials/joyrl/tasks/Test_MountainCar-v0_DQN_20230404-212450 <class 'str'>
2023-04-04 21:24:50 - r - INFO: - model_dir /home/PJLAB/geyuhong/rl-tutorials/joyrl/tasks/Test_MountainCar-v0_DQN_20230404-212450/models <class 'str'>
2023-04-04 21:24:50 - r - INFO: - res_dir /home/PJLAB/geyuhong/rl-tutorials/joyrl/tasks/Test_MountainCar-v0_DQN_20230404-212450/results <class 'str'>
2023-04-04 21:24:50 - r - INFO: - log_dir /home/PJLAB/geyuhong/rl-tutorials/joyrl/tasks/Test_MountainCar-v0_DQN_20230404-212450/logs <class 'str'>
2023-04-04 21:24:50 - r - INFO: - traj_dir /home/PJLAB/geyuhong/rl-tutorials/joyrl/tasks/Test_MountainCar-v0_DQN_20230404-212450/traj <class 'str'>
2023-04-04 21:24:50 - r - INFO: - ================================================================================
2023-04-04 21:24:50 - r - INFO: - n_states: 2, n_actions: 3
2023-04-04 21:24:50 - r - INFO: - Start testing!
2023-04-04 21:24:50 - r - INFO: - Env: MountainCar-v0, Algorithm: DQN, Device: cpu
2023-04-04 21:24:54 - r - INFO: - Episode: 1/20, Reward: -109.000, Step: 109
2023-04-04 21:24:58 - r - INFO: - Episode: 2/20, Reward: -109.000, Step: 109
2023-04-04 21:25:01 - r - INFO: - Episode: 3/20, Reward: -109.000, Step: 109
2023-04-04 21:25:05 - r - INFO: - Episode: 4/20, Reward: -109.000, Step: 109
2023-04-04 21:25:09 - r - INFO: - Episode: 5/20, Reward: -109.000, Step: 109
2023-04-04 21:25:12 - r - INFO: - Episode: 6/20, Reward: -109.000, Step: 109
2023-04-04 21:25:16 - r - INFO: - Episode: 7/20, Reward: -109.000, Step: 109
2023-04-04 21:25:19 - r - INFO: - Episode: 8/20, Reward: -109.000, Step: 109
2023-04-04 21:25:23 - r - INFO: - Episode: 9/20, Reward: -109.000, Step: 109
2023-04-04 21:25:27 - r - INFO: - Episode: 10/20, Reward: -109.000, Step: 109
2023-04-04 21:25:30 - r - INFO: - Episode: 11/20, Reward: -109.000, Step: 109
2023-04-04 21:25:34 - r - INFO: - Episode: 12/20, Reward: -109.000, Step: 109
2023-04-04 21:25:38 - r - INFO: - Episode: 13/20, Reward: -109.000, Step: 109
2023-04-04 21:25:41 - r - INFO: - Episode: 14/20, Reward: -109.000, Step: 109
2023-04-04 21:25:45 - r - INFO: - Episode: 15/20, Reward: -109.000, Step: 109
2023-04-04 21:25:49 - r - INFO: - Episode: 16/20, Reward: -109.000, Step: 109
2023-04-04 21:25:52 - r - INFO: - Episode: 17/20, Reward: -109.000, Step: 109
2023-04-04 21:25:56 - r - INFO: - Episode: 18/20, Reward: -109.000, Step: 109
2023-04-04 21:25:59 - r - INFO: - Episode: 19/20, Reward: -109.000, Step: 109
2023-04-04 21:26:03 - r - INFO: - Episode: 20/20, Reward: -109.000, Step: 109
2023-04-04 21:26:03 - r - INFO: - Finish testing!