jpabbuehl commited on
Commit
53447f9
1 Parent(s): 1b780fe

End of training

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
- value: 0.917
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
31
  It achieves the following results on the evaluation set:
32
- - Loss: 0.2502
33
- - Accuracy: 0.917
34
 
35
  ## Model description
36
 
@@ -56,14 +56,16 @@ The following hyperparameters were used during training:
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
  - lr_scheduler_warmup_steps: 500
59
- - num_epochs: 1
60
  - mixed_precision_training: Native AMP
61
 
62
  ### Training results
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
- | 0.9571 | 1.0 | 500 | 0.2502 | 0.917 |
 
 
67
 
68
 
69
  ### Framework versions
 
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
+ value: 0.9295
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 0.1501
33
+ - Accuracy: 0.9295
34
 
35
  ## Model description
36
 
 
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
  - lr_scheduler_warmup_steps: 500
59
+ - num_epochs: 3
60
  - mixed_precision_training: Native AMP
61
 
62
  ### Training results
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.9265 | 1.0 | 500 | 0.2448 | 0.9175 |
67
+ | 0.1855 | 2.0 | 1000 | 0.1660 | 0.9245 |
68
+ | 0.1017 | 3.0 | 1500 | 0.1501 | 0.9295 |
69
 
70
 
71
  ### Framework versions