--- language: en license: apache-2.0 --- # SQFT Base Model: sqft-llama-3-8b-60-base - Source Model: [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - Sparse Method: [Wanda](https://github.com/locuslab/wanda) - Sparsity: 60% - Quantization: No ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) - **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]() ## How to get this model Refer to the commands in [SQFT/run_command/llama-3-8b/sparse_quantization.sh#L11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/llama-3-8b/sparse_quantization.sh#L11). ## Citation ```bash @article{munoz2024sqft, title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={}, year={2024} } ``` ## Acknowledgement Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach. ## License Apache-2.0