--- library_name: transformers license: mit language: - fr - en tags: - french - chocolatine datasets: - jpacifico/french-orca-dpo-pairs-revised pipeline_tag: text-generation --- ### Chocolatine-14B-Instruct-DPO-v1.1 DPO fine-tuned of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) (14B params) using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset. Training in French also improves the model in English, surpassing the performances of its base model. Window context = 4k tokens ### Benchmarks The first Chocolatine-14B version is already the best-performing < 50B model in terms of MMLU-PRO on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024) This new version 1.1 is also submitted, results coming soon. ### MT-Bench Chocolatine-14B-Instruct-DPO-v1.1 is outperforming Phi-3-medium-4k-instruct and its previous version. And also this v1.1 is pretty close from GPT-4o-mini (first turn is amazing!). ``` ########## First turn ########## score model turn Chocolatine-14B-Instruct-DPO-v1.1 1 9.1375 gpt-4o-mini 1 9.1375 Chocolatine-14B-Instruct-4k-DPO 1 8.7250 Phi-3-medium-4k-instruct 1 8.7125 Chocolatine-3B-Instruct-DPO-Revised 1 8.4625 Phi-3-mini-4k-instruct 1 8.4125 gpt-3.5-turbo 1 8.2750 ########## Second turn ########## score model turn gpt-4o-mini 2 9.05000 gpt-3.5-turbo 2 8.20625 Chocolatine-14B-Instruct-DPO-v1.1 2 8.18750 Chocolatine-14B-Instruct-4k-DPO 2 8.15000 Phi-3-medium-4k-instruct 2 7.92500 Chocolatine-3B-Instruct-DPO-Revised 2 7.61250 Phi-3-mini-4k-instruct 2 7.38750 ########## Average ########## score model gpt-4o-mini 9.093750 Chocolatine-14B-Instruct-DPO-v1.1 8.662500 Chocolatine-14B-Instruct-4k-DPO 8.437500 Phi-3-medium-4k-instruct 8.318750 gpt-3.5-turbo 8.240625 Chocolatine-3B-Instruct-DPO-Revised 8.037500 Phi-3-mini-4k-instruct 7.900000 ``` ### Usage You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) You can also run Chocolatine using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ### Limitations The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanism. - **Developed by:** Jonathan Pacifico, 2024 - **Model type:** LLM - **Language(s) (NLP):** French, English - **License:** MIT