jpacifico commited on
Commit
94f16e0
1 Parent(s): ab79763

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -195
README.md CHANGED
@@ -1,199 +1,134 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - fr
6
+ - en
7
+ tags:
8
+ - french
9
+ - chocolatine
10
+ datasets:
11
+ - jpacifico/french-orca-dpo-pairs-revised
12
+ pipeline_tag: text-generation
13
  ---
14
 
15
+ ### Chocolatine-3B-Instruct-DPO-v1.2
16
+
17
+ DPO fine-tuned of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) (3.82B params)
18
+ using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
19
+ Training in French also improves the model in English, surpassing the performances of its base model.
20
+ 128K context length
21
+
22
+ ### OpenLLM Leaderboard
23
+
24
+ TBD.
25
+
26
+ ### MT-Bench-French
27
+
28
+ Chocolatine-3B-Instruct-DPO-v1.2 is outperforming Phi-3-medium-4k-instruct and Phi-3.5-mini-instruct on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.
29
+
30
+ ```
31
+ ########## First turn ##########
32
+ score
33
+ model turn
34
+ gpt-4o-mini 1 9.2875
35
+ Chocolatine-14B-Instruct-4k-DPO 1 8.6375
36
+ Chocolatine-14B-Instruct-DPO-v1.2 1 8.6125
37
+ Phi-3.5-mini-instruct 1 8.5250
38
+ Chocolatine-3B-Instruct-DPO-v1.2 1 8.3750
39
+ Phi-3-medium-4k-instruct 1 8.2250
40
+ gpt-3.5-turbo 1 8.1375
41
+ Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
42
+ Daredevil-8B 1 7.8875
43
+ Meta-Llama-3.1-8B-Instruct 1 7.0500
44
+ vigostral-7b-chat 1 6.7875
45
+ Mistral-7B-Instruct-v0.3 1 6.7500
46
+ gemma-2-2b-it 1 6.4500
47
+ French-Alpaca-7B-Instruct_beta 1 5.6875
48
+ vigogne-2-7b-chat 1 5.6625
49
+
50
+ ########## Second turn ##########
51
+ score
52
+ model turn
53
+ gpt-4o-mini 2 8.912500
54
+ Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
55
+ Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
56
+ Chocolatine-3B-Instruct-DPO-v1.2 2 7.862500
57
+ Phi-3-medium-4k-instruct 2 7.750000
58
+ Chocolatine-14B-Instruct-4k-DPO 2 7.737500
59
+ gpt-3.5-turbo 2 7.679167
60
+ Phi-3.5-mini-instruct 2 7.575000
61
+ Daredevil-8B 2 7.087500
62
+ Meta-Llama-3.1-8B-Instruct 2 6.787500
63
+ Mistral-7B-Instruct-v0.3 2 6.500000
64
+ vigostral-7b-chat 2 6.162500
65
+ gemma-2-2b-it 2 6.100000
66
+ French-Alpaca-7B-Instruct_beta 2 5.487395
67
+ vigogne-2-7b-chat 2 2.775000
68
+
69
+ ########## Average ##########
70
+ score
71
+ model
72
+ gpt-4o-mini 9.100000
73
+ Chocolatine-14B-Instruct-DPO-v1.2 8.475000
74
+ Chocolatine-14B-Instruct-4k-DPO 8.187500
75
+ Chocolatine-3B-Instruct-DPO-v1.2 8.118750
76
+ Phi-3.5-mini-instruct 8.050000
77
+ Phi-3-medium-4k-instruct 7.987500
78
+ Chocolatine-3B-Instruct-DPO-Revised 7.962500
79
+ gpt-3.5-turbo 7.908333
80
+ Daredevil-8B 7.487500
81
+ Meta-Llama-3.1-8B-Instruct 6.918750
82
+ Mistral-7B-Instruct-v0.3 6.625000
83
+ vigostral-7b-chat 6.475000
84
+ gemma-2-2b-it 6.275000
85
+ French-Alpaca-7B-Instruct_beta 5.587866
86
+ vigogne-2-7b-chat 4.218750
87
+ ```
88
+
89
+ ### Usage
90
+
91
+ You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
92
+
93
+ You can also run Chocolatine using the following code:
94
+
95
+ ```python
96
+ import transformers
97
+ from transformers import AutoTokenizer
98
+
99
+ # Format prompt
100
+ message = [
101
+ {"role": "system", "content": "You are a helpful assistant chatbot."},
102
+ {"role": "user", "content": "What is a Large Language Model?"}
103
+ ]
104
+ tokenizer = AutoTokenizer.from_pretrained(new_model)
105
+ prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
106
+
107
+ # Create pipeline
108
+ pipeline = transformers.pipeline(
109
+ "text-generation",
110
+ model=new_model,
111
+ tokenizer=tokenizer
112
+ )
113
+
114
+ # Generate text
115
+ sequences = pipeline(
116
+ prompt,
117
+ do_sample=True,
118
+ temperature=0.7,
119
+ top_p=0.9,
120
+ num_return_sequences=1,
121
+ max_length=200,
122
+ )
123
+ print(sequences[0]['generated_text'])
124
+ ```
125
+
126
+ ### Limitations
127
+
128
+ The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
129
+ It does not have any moderation mechanism.
130
+
131
+ - **Developed by:** Jonathan Pacifico, 2024
132
+ - **Model type:** LLM
133
+ - **Language(s) (NLP):** French, English
134
+ - **License:** MIT