File size: 2,048 Bytes
e22cf56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags:
- yolo11
- valorant
- object
- detection
---
# Valorant Players Detector
#### Supported Labels
['Body', 'Head']
#### ALL my models YOLOv10 & YOLOv9
- Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c
- Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s
- Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m
- Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b
- Yolov10b: https://huggingface.co/jparedesDS/valorant-yolov10b
#### How to use
```
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10b_vlr.pt')
# Run inference on 'image.png' with arguments
model.predict(
'image.png',
save=True,
device=0
)
```
#### Confusion matrix normalized
![confusion_matrix_normalized.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/tE3CoiaB8ODKdQs_gTWTp.png)
#### Labels
![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/okW-nqDnryqccYbsDt-ra.jpeg)
#### Results
![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/k7lUu5uaNXISLyGfLkOdX.png)
#### Predict
![val_batch2_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/_ku6Baq6CrSkE7ap4zQbn.jpeg)
![val_batch1_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/EK7SfvdOdUAY8d20IXzqI.jpeg)
```
YOLO11m summary (fused): 303 layers, 20,031,574 parameters, 0 gradients, 67.7 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 11/11 [00:06<00:00, 1.71it/s]
all 999 2016 0.963 0.898 0.931 0.655
Body 966 1029 0.971 0.935 0.958 0.791
Head 936 987 0.955 0.862 0.904 0.519
```
#### Others models Counter Strike 2 YOLOv10m Object Detection
https://huggingface.co/jparedesDS/valorant-yolov10b |