--- tags: - yolo11 - valorant - object - detection --- # Valorant Players Detector #### Supported Labels ['Body', 'Head'] #### ALL my models YOLOv10 & YOLOv9 - Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c - Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s - Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m - Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b - Yolov10b: https://huggingface.co/jparedesDS/valorant-yolov10b #### How to use ``` from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolov10b_vlr.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` #### Confusion matrix normalized ![confusion_matrix_normalized.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/tE3CoiaB8ODKdQs_gTWTp.png) #### Labels ![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/okW-nqDnryqccYbsDt-ra.jpeg) #### Results ![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/k7lUu5uaNXISLyGfLkOdX.png) #### Predict ![val_batch2_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/_ku6Baq6CrSkE7ap4zQbn.jpeg) ![val_batch1_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/EK7SfvdOdUAY8d20IXzqI.jpeg) ``` YOLO11m summary (fused): 303 layers, 20,031,574 parameters, 0 gradients, 67.7 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 11/11 [00:06<00:00, 1.71it/s] all 999 2016 0.963 0.898 0.931 0.655 Body 966 1029 0.971 0.935 0.958 0.791 Head 936 987 0.955 0.862 0.904 0.519 ``` #### Others models Counter Strike 2 YOLOv10m Object Detection https://huggingface.co/jparedesDS/valorant-yolov10b