jpino commited on
Commit
a2a0678
1 Parent(s): b615e38

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - data_cartas_layoutv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-letter_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: data_cartas_layoutv3
20
+ type: data_cartas_layoutv3
21
+ config: default
22
+ split: test
23
+ args: default
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7411894273127754
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8672680412371134
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7992874109263659
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9631952889969916
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-letter_100
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_cartas_layoutv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1884
47
+ - Precision: 0.7412
48
+ - Recall: 0.8673
49
+ - F1: 0.7993
50
+ - Accuracy: 0.9632
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 5e-06
70
+ - train_batch_size: 4
71
+ - eval_batch_size: 4
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 3000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 3.57 | 250 | 0.4503 | 0.2934 | 0.2242 | 0.2542 | 0.8928 |
82
+ | 0.5521 | 7.14 | 500 | 0.2833 | 0.4291 | 0.4639 | 0.4458 | 0.9209 |
83
+ | 0.5521 | 10.71 | 750 | 0.2116 | 0.5702 | 0.6753 | 0.6183 | 0.9437 |
84
+ | 0.173 | 14.29 | 1000 | 0.1786 | 0.6414 | 0.7835 | 0.7053 | 0.9562 |
85
+ | 0.173 | 17.86 | 1250 | 0.1772 | 0.6815 | 0.8492 | 0.7562 | 0.9581 |
86
+ | 0.077 | 21.43 | 1500 | 0.1737 | 0.7144 | 0.8737 | 0.7861 | 0.9616 |
87
+ | 0.077 | 25.0 | 1750 | 0.1768 | 0.7311 | 0.8724 | 0.7955 | 0.9615 |
88
+ | 0.0441 | 28.57 | 2000 | 0.1694 | 0.7726 | 0.8273 | 0.7990 | 0.9646 |
89
+ | 0.0441 | 32.14 | 2250 | 0.1874 | 0.7400 | 0.8621 | 0.7964 | 0.9620 |
90
+ | 0.0293 | 35.71 | 2500 | 0.1862 | 0.7321 | 0.8698 | 0.7951 | 0.9622 |
91
+ | 0.0293 | 39.29 | 2750 | 0.1887 | 0.7332 | 0.8711 | 0.7962 | 0.9620 |
92
+ | 0.0237 | 42.86 | 3000 | 0.1884 | 0.7412 | 0.8673 | 0.7993 | 0.9632 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.29.2
98
+ - Pytorch 2.0.1+cu118
99
+ - Datasets 2.12.0
100
+ - Tokenizers 0.13.3