Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.20 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b37ed7dd848e76a4f66e29deee8d9c739bbbdbca8163a58707ea732aadd1fdad
|
3 |
+
size 108215
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79971d8d1c60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79971d8d6780>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1698582713416693900,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXi2FPjuw7zsF3ug+NvgnP51H5T7qMqM9sAv4vdy84r4ZFzO+L1CJP/axy77dY5E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4pyqv3tto7+r9Ki+4AOMPzy2wT9aR7m/363JvUuRob8dtTC/qp+ZP0fUT78uDdm+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeLYU+O7DvOwXe6D4sKPE+JLd0Ol6rwz42+Cc/nUflPuoyoz1reCY+JZ7QP+yYx7+wC/i93LzivhkXM74FXuO/JinWv+e0r78vUIk/9rHLvt1jkT5k1Mc/czvHvzehkb+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.26011175 0.00731471 0.45481887]\n [ 0.65613115 0.447812 0.07968695]\n [-0.12111604 -0.44284713 -0.1748928 ]\n [ 1.0727595 -0.3978421 0.28396502]]",
|
34 |
+
"desired_goal": "[[-1.3329127 -1.2767786 -0.32999167]\n [ 1.0938683 1.5133739 -1.44749 ]\n [-0.09847616 -1.2622465 -0.69026357]\n [ 1.2001851 -0.81183285 -0.42392868]]",
|
35 |
+
"observation": "[[ 2.6011175e-01 7.3147095e-03 4.5481887e-01 4.7100961e-01\n 9.3351514e-04 3.8216680e-01]\n [ 6.5613115e-01 4.4781199e-01 7.9686955e-02 1.6256873e-01\n 1.6298262e+00 -1.5593543e+00]\n [-1.2111604e-01 -4.4284713e-01 -1.7489280e-01 -1.7763067e+00\n -1.6731308e+00 -1.3727082e+00]\n [ 1.0727595e+00 -3.9784211e-01 2.8396502e-01 1.5611691e+00\n -1.5565017e+00 -1.1377324e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtScBPuMawL3rB0I+JQ0yve8Qo736Gj49Y/0HvqKmLr1I1dM9bGKNPK+Nwj0FgZA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.12612803 -0.09380128 0.18948333]\n [-0.04346957 -0.07962214 0.04641245]\n [-0.13280253 -0.04263938 0.10343415]\n [ 0.01725885 0.0949968 0.28223434]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8O9Ba9sabaMAWyUSwKMAXSUR0CmALFUIcBEdX2UKGgGR7/V+4b0e2d/aAdLBGgIR0CmAXRfF72MdX2UKGgGR7/M+RHPNVzZaAdLA2gIR0CmATP7N0NjdX2UKGgGR7/RXQMQVbiZaAdLA2gIR0CmAQOSGJvYdX2UKGgGR7/SKbKA8SwoaAdLA2gIR0CmAYqbSZ0CdX2UKGgGR7/KeQMhHLA6aAdLA2gIR0CmAUpMYdhidX2UKGgGR7/fKYzBRAKOaAdLBGgIR0CmANAuRLbpdX2UKGgGR7+/73wkPczqaAdLAmgIR0CmAV0Uwi7kdX2UKGgGR7/GL4N7SiM6aAdLA2gIR0CmAR6r/82rdX2UKGgGR7/D5TqB3A2yaAdLAmgIR0CmAOL/S6UadX2UKGgGR7+mCTUy57PZaAdLAWgIR0CmAWVKPGQ0dX2UKGgGR7/cHhS9/SYxaAdLBGgIR0CmAa2Gh24edX2UKGgGR7+/naFmFrVOaAdLAmgIR0CmAS5Yoy9FdX2UKGgGR7/MJIDoyKvWaAdLA2gIR0CmAPn7YTTOdX2UKGgGR7/Hswco6S1WaAdLA2gIR0CmAX9m6GxmdX2UKGgGR7/P9rGipNsWaAdLA2gIR0CmAcc8s+V1dX2UKGgGR7+peXzDn/1haAdLAWgIR0CmAYdTP0I1dX2UKGgGR7/IdgfEGZ/kaAdLA2gIR0CmAUjD8+A3dX2UKGgGR7+7Mr3Cbc46aAdLAmgIR0CmAQ0lZ5iWdX2UKGgGR7+8mZ3LV4HHaAdLAmgIR0CmAZet0V8DdX2UKGgGR7/Nlmvnr6ciaAdLA2gIR0CmAd+3x4IKdX2UKGgGR7/MDRtxdY4iaAdLA2gIR0CmAWGgrYoRdX2UKGgGR7/Pgb6xgRbsaAdLA2gIR0CmASYukDZEdX2UKGgGR7+zVZs9B8hLaAdLAmgIR0CmAaxBmf5DdX2UKGgGR7+1sLv1DjR2aAdLAmgIR0CmAThqj8DTdX2UKGgGR7/PTUiILw4LaAdLA2gIR0CmAfzX8O0+dX2UKGgGR7/IhStNi6QOaAdLA2gIR0CmAX9US7GvdX2UKGgGR7/QMW43FUADaAdLA2gIR0CmAcVeSjgydX2UKGgGR7++w7kn1FpgaAdLAmgIR0CmAY1tfoicdX2UKGgGR7/Q4yXUpd8iaAdLA2gIR0CmAVH31zySdX2UKGgGR7/XabnX/YJ3aAdLA2gIR0CmAhhQ3xWldX2UKGgGR7+2K/Efkmx/aAdLAmgIR0CmAdf/echDdX2UKGgGR7+vkPtlZowmaAdLAmgIR0CmAWRYRujzdX2UKGgGR7/AZWq94/u9aAdLAmgIR0CmAibMgU1ydX2UKGgGR7/XXp4bCJoCaAdLA2gIR0CmAakNFz+4dX2UKGgGR7/Rqc3EQ5FPaAdLA2gIR0CmAfA62fCidX2UKGgGR7+8YsNDtw71aAdLAmgIR0CmAXet8uzydX2UKGgGR7/PcZ9/jKgaaAdLA2gIR0CmAkbFKkEcdX2UKGgGR7/IhwEQoTf0aAdLA2gIR0CmAcnN5dGBdX2UKGgGR7/T8BMi8nNQaAdLA2gIR0CmAZS5AhStdX2UKGgGR7/Ek4WDYh+waAdLAmgIR0CmAlhVU+9rdX2UKGgGR7/cLqD9OymiaAdLBGgIR0CmAhhttQ9BdX2UKGgGR7/MVUuL74zraAdLA2gIR0CmAeEfLcKxdX2UKGgGR7/CYlY2bXpXaAdLAmgIR0CmAifCQ9zPdX2UKGgGR7/RZIxxkupTaAdLA2gIR0CmAa1qesgddX2UKGgGR7/NXHzYmLLqaAdLA2gIR0CmAnS2Yv38dX2UKGgGR7+5+2E0zj3maAdLAmgIR0CmAfYqwyIpdX2UKGgGR7/Gk2P1ct5EaAdLAmgIR0CmAcI91U2ldX2UKGgGR7/ACQLeANG3aAdLA2gIR0CmAkROtW+5dX2UKGgGR7/GVzp5eJHiaAdLA2gIR0CmAg1HFxXGdX2UKGgGR7/U+UyHmA9WaAdLBGgIR0CmApQvHtF8dX2UKGgGR7+9mDlHSWqtaAdLAmgIR0CmAlPqkdmydX2UKGgGR7+oIKMNtqHoaAdLAWgIR0CmAhVaOgg6dX2UKGgGR7+efZmI0qH5aAdLAWgIR0CmAp/IKc/ddX2UKGgGR7/bthuwX668aAdLBGgIR0CmAeSdOIqLdX2UKGgGR7/SjVQQ+UyIaAdLA2gIR0CmAi9mxt52dX2UKGgGR7/cKzAvcrRTaAdLBGgIR0CmAr9RaX8gdX2UKGgGR7/Zkona37UHaAdLBGgIR0CmAgRg7YChdX2UKGgGR7/TLQXyiEg4aAdLBGgIR0CmAlRNATqTdX2UKGgGR7/PxI8QqZtvaAdLA2gIR0CmAttD2JzldX2UKGgGR7/U9s7+1jRVaAdLA2gIR0CmAiANPP9ldX2UKGgGR7/kYVh1DBuXaAdLCWgIR0CmAqLb5/LDdX2UKGgGR7/CQFLWZqmCaAdLAmgIR0CmAmTnzQNTdX2UKGgGR7/CAjps41gqaAdLAmgIR0CmAuviT+vRdX2UKGgGR7+/3g1m8M/haAdLAmgIR0CmAjDslb/wdX2UKGgGR7+6Qr+YMOPOaAdLAmgIR0CmAv4CQtBfdX2UKGgGR7/PIT4+KTB7aAdLA2gIR0CmAr1uivgWdX2UKGgGR7/cAfuCwr1/aAdLBGgIR0CmAoYyGi5/dX2UKGgGR7/JY5DJEH+qaAdLA2gIR0CmAkqvFFUidX2UKGgGR7/CIXTEzfrKaAdLAmgIR0CmAw2+oLofdX2UKGgGR7/Tq1w5vLowaAdLBGgIR0CmAt99tuUEdX2UKGgGR7/QmcOLBKtgaAdLA2gIR0CmAqEe6qbSdX2UKGgGR7/HKODJ2dNGaAdLA2gIR0CmAmV3t8eCdX2UKGgGR7/NFnZkCmuUaAdLA2gIR0CmAygjY7JXdX2UKGgGR7+zsdDIBBAwaAdLAmgIR0CmAu8lgMMJdX2UKGgGR7+3VhCtzS1FaAdLAmgIR0CmAzggPmPpdX2UKGgGR7/JJvo/zJ6qaAdLA2gIR0CmArmdy1eCdX2UKGgGR7/KEKVpsXSCaAdLA2gIR0CmAn5yEL6UdX2UKGgGR7/MHVPN3W4FaAdLA2gIR0CmAw47A+INdX2UKGgGR7/SgmJFb3XaaAdLA2gIR0CmAtg00m+kdX2UKGgGR7/hfbTMJQchaAdLBGgIR0CmA2AVXV9XdX2UKGgGR7+3A9FF2FFlaAdLAmgIR0CmAx/oq0+ldX2UKGgGR7/QhGH58BuGaAdLBGgIR0CmAqV8stkGdX2UKGgGR7+6yLQ5WBBiaAdLAmgIR0CmAulCb+cZdX2UKGgGR7/FnaFmFrVOaAdLAmgIR0CmAy+GoJiRdX2UKGgGR7/QPu5SWJJoaAdLA2gIR0CmA3yBTXJ6dX2UKGgGR7/QLGJemelLaAdLA2gIR0CmAsGDtgKGdX2UKGgGR7/A++M6zVtoaAdLAmgIR0CmA0PMKTjedX2UKGgGR7+jDVH4GlhxaAdLAWgIR0CmAsm65Gz9dX2UKGgGR7/Zrwe/5+H8aAdLBGgIR0CmAw1SwW30dX2UKGgGR7/Wqnm7rcCYaAdLA2gIR0CmA5Rhc7hfdX2UKGgGR7/BzbvgFX7taAdLAmgIR0CmAtmCiAUddX2UKGgGR7/QE4//vOQhaAdLA2gIR0CmA1v7FbV0dX2UKGgGR7+6O7xusLfDaAdLAmgIR0CmAx1ZcLSedX2UKGgGR7/HYkE9t/FzaAdLA2gIR0CmA7D7qIJrdX2UKGgGR7/SHwgDA8B/aAdLA2gIR0CmAvYyoGY8dX2UKGgGR7/Za5f+jua4aAdLBGgIR0CmA4Cbc45tdX2UKGgGR7/VcmjTKDChaAdLBGgIR0CmA0TYNAkcdX2UKGgGR7/BQla8pTddaAdLAmgIR0CmAwlQdjoZdX2UKGgGR7/M0KJEYwZgaAdLA2gIR0CmA8y5I6KcdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ee7e0061ff5e206602a02236cf5b79afe7bc9c735c308bea6253fb03b6dbe0
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2efdffb17631779bd59263cfd72293ea8516b3a8b31302176b4f24f1d4e0f12f
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79971d8d1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79971d8d6780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698582713416693900, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXi2FPjuw7zsF3ug+NvgnP51H5T7qMqM9sAv4vdy84r4ZFzO+L1CJP/axy77dY5E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4pyqv3tto7+r9Ki+4AOMPzy2wT9aR7m/363JvUuRob8dtTC/qp+ZP0fUT78uDdm+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeLYU+O7DvOwXe6D4sKPE+JLd0Ol6rwz42+Cc/nUflPuoyoz1reCY+JZ7QP+yYx7+wC/i93LzivhkXM74FXuO/JinWv+e0r78vUIk/9rHLvt1jkT5k1Mc/czvHvzehkb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26011175 0.00731471 0.45481887]\n [ 0.65613115 0.447812 0.07968695]\n [-0.12111604 -0.44284713 -0.1748928 ]\n [ 1.0727595 -0.3978421 0.28396502]]", "desired_goal": "[[-1.3329127 -1.2767786 -0.32999167]\n [ 1.0938683 1.5133739 -1.44749 ]\n [-0.09847616 -1.2622465 -0.69026357]\n [ 1.2001851 -0.81183285 -0.42392868]]", "observation": "[[ 2.6011175e-01 7.3147095e-03 4.5481887e-01 4.7100961e-01\n 9.3351514e-04 3.8216680e-01]\n [ 6.5613115e-01 4.4781199e-01 7.9686955e-02 1.6256873e-01\n 1.6298262e+00 -1.5593543e+00]\n [-1.2111604e-01 -4.4284713e-01 -1.7489280e-01 -1.7763067e+00\n -1.6731308e+00 -1.3727082e+00]\n [ 1.0727595e+00 -3.9784211e-01 2.8396502e-01 1.5611691e+00\n -1.5565017e+00 -1.1377324e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtScBPuMawL3rB0I+JQ0yve8Qo736Gj49Y/0HvqKmLr1I1dM9bGKNPK+Nwj0FgZA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12612803 -0.09380128 0.18948333]\n [-0.04346957 -0.07962214 0.04641245]\n [-0.13280253 -0.04263938 0.10343415]\n [ 0.01725885 0.0949968 0.28223434]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8O9Ba9sabaMAWyUSwKMAXSUR0CmALFUIcBEdX2UKGgGR7/V+4b0e2d/aAdLBGgIR0CmAXRfF72MdX2UKGgGR7/M+RHPNVzZaAdLA2gIR0CmATP7N0NjdX2UKGgGR7/RXQMQVbiZaAdLA2gIR0CmAQOSGJvYdX2UKGgGR7/SKbKA8SwoaAdLA2gIR0CmAYqbSZ0CdX2UKGgGR7/KeQMhHLA6aAdLA2gIR0CmAUpMYdhidX2UKGgGR7/fKYzBRAKOaAdLBGgIR0CmANAuRLbpdX2UKGgGR7+/73wkPczqaAdLAmgIR0CmAV0Uwi7kdX2UKGgGR7/GL4N7SiM6aAdLA2gIR0CmAR6r/82rdX2UKGgGR7/D5TqB3A2yaAdLAmgIR0CmAOL/S6UadX2UKGgGR7+mCTUy57PZaAdLAWgIR0CmAWVKPGQ0dX2UKGgGR7/cHhS9/SYxaAdLBGgIR0CmAa2Gh24edX2UKGgGR7+/naFmFrVOaAdLAmgIR0CmAS5Yoy9FdX2UKGgGR7/MJIDoyKvWaAdLA2gIR0CmAPn7YTTOdX2UKGgGR7/Hswco6S1WaAdLA2gIR0CmAX9m6GxmdX2UKGgGR7/P9rGipNsWaAdLA2gIR0CmAcc8s+V1dX2UKGgGR7+peXzDn/1haAdLAWgIR0CmAYdTP0I1dX2UKGgGR7/IdgfEGZ/kaAdLA2gIR0CmAUjD8+A3dX2UKGgGR7+7Mr3Cbc46aAdLAmgIR0CmAQ0lZ5iWdX2UKGgGR7+8mZ3LV4HHaAdLAmgIR0CmAZet0V8DdX2UKGgGR7/Nlmvnr6ciaAdLA2gIR0CmAd+3x4IKdX2UKGgGR7/MDRtxdY4iaAdLA2gIR0CmAWGgrYoRdX2UKGgGR7/Pgb6xgRbsaAdLA2gIR0CmASYukDZEdX2UKGgGR7+zVZs9B8hLaAdLAmgIR0CmAaxBmf5DdX2UKGgGR7+1sLv1DjR2aAdLAmgIR0CmAThqj8DTdX2UKGgGR7/PTUiILw4LaAdLA2gIR0CmAfzX8O0+dX2UKGgGR7/IhStNi6QOaAdLA2gIR0CmAX9US7GvdX2UKGgGR7/QMW43FUADaAdLA2gIR0CmAcVeSjgydX2UKGgGR7++w7kn1FpgaAdLAmgIR0CmAY1tfoicdX2UKGgGR7/Q4yXUpd8iaAdLA2gIR0CmAVH31zySdX2UKGgGR7/XabnX/YJ3aAdLA2gIR0CmAhhQ3xWldX2UKGgGR7+2K/Efkmx/aAdLAmgIR0CmAdf/echDdX2UKGgGR7+vkPtlZowmaAdLAmgIR0CmAWRYRujzdX2UKGgGR7/AZWq94/u9aAdLAmgIR0CmAibMgU1ydX2UKGgGR7/XXp4bCJoCaAdLA2gIR0CmAakNFz+4dX2UKGgGR7/Rqc3EQ5FPaAdLA2gIR0CmAfA62fCidX2UKGgGR7+8YsNDtw71aAdLAmgIR0CmAXet8uzydX2UKGgGR7/PcZ9/jKgaaAdLA2gIR0CmAkbFKkEcdX2UKGgGR7/IhwEQoTf0aAdLA2gIR0CmAcnN5dGBdX2UKGgGR7/T8BMi8nNQaAdLA2gIR0CmAZS5AhStdX2UKGgGR7/Ek4WDYh+waAdLAmgIR0CmAlhVU+9rdX2UKGgGR7/cLqD9OymiaAdLBGgIR0CmAhhttQ9BdX2UKGgGR7/MVUuL74zraAdLA2gIR0CmAeEfLcKxdX2UKGgGR7/CYlY2bXpXaAdLAmgIR0CmAifCQ9zPdX2UKGgGR7/RZIxxkupTaAdLA2gIR0CmAa1qesgddX2UKGgGR7/NXHzYmLLqaAdLA2gIR0CmAnS2Yv38dX2UKGgGR7+5+2E0zj3maAdLAmgIR0CmAfYqwyIpdX2UKGgGR7/Gk2P1ct5EaAdLAmgIR0CmAcI91U2ldX2UKGgGR7/ACQLeANG3aAdLA2gIR0CmAkROtW+5dX2UKGgGR7/GVzp5eJHiaAdLA2gIR0CmAg1HFxXGdX2UKGgGR7/U+UyHmA9WaAdLBGgIR0CmApQvHtF8dX2UKGgGR7+9mDlHSWqtaAdLAmgIR0CmAlPqkdmydX2UKGgGR7+oIKMNtqHoaAdLAWgIR0CmAhVaOgg6dX2UKGgGR7+efZmI0qH5aAdLAWgIR0CmAp/IKc/ddX2UKGgGR7/bthuwX668aAdLBGgIR0CmAeSdOIqLdX2UKGgGR7/SjVQQ+UyIaAdLA2gIR0CmAi9mxt52dX2UKGgGR7/cKzAvcrRTaAdLBGgIR0CmAr9RaX8gdX2UKGgGR7/Zkona37UHaAdLBGgIR0CmAgRg7YChdX2UKGgGR7/TLQXyiEg4aAdLBGgIR0CmAlRNATqTdX2UKGgGR7/PxI8QqZtvaAdLA2gIR0CmAttD2JzldX2UKGgGR7/U9s7+1jRVaAdLA2gIR0CmAiANPP9ldX2UKGgGR7/kYVh1DBuXaAdLCWgIR0CmAqLb5/LDdX2UKGgGR7/CQFLWZqmCaAdLAmgIR0CmAmTnzQNTdX2UKGgGR7/CAjps41gqaAdLAmgIR0CmAuviT+vRdX2UKGgGR7+/3g1m8M/haAdLAmgIR0CmAjDslb/wdX2UKGgGR7+6Qr+YMOPOaAdLAmgIR0CmAv4CQtBfdX2UKGgGR7/PIT4+KTB7aAdLA2gIR0CmAr1uivgWdX2UKGgGR7/cAfuCwr1/aAdLBGgIR0CmAoYyGi5/dX2UKGgGR7/JY5DJEH+qaAdLA2gIR0CmAkqvFFUidX2UKGgGR7/CIXTEzfrKaAdLAmgIR0CmAw2+oLofdX2UKGgGR7/Tq1w5vLowaAdLBGgIR0CmAt99tuUEdX2UKGgGR7/QmcOLBKtgaAdLA2gIR0CmAqEe6qbSdX2UKGgGR7/HKODJ2dNGaAdLA2gIR0CmAmV3t8eCdX2UKGgGR7/NFnZkCmuUaAdLA2gIR0CmAygjY7JXdX2UKGgGR7+zsdDIBBAwaAdLAmgIR0CmAu8lgMMJdX2UKGgGR7+3VhCtzS1FaAdLAmgIR0CmAzggPmPpdX2UKGgGR7/JJvo/zJ6qaAdLA2gIR0CmArmdy1eCdX2UKGgGR7/KEKVpsXSCaAdLA2gIR0CmAn5yEL6UdX2UKGgGR7/MHVPN3W4FaAdLA2gIR0CmAw47A+INdX2UKGgGR7/SgmJFb3XaaAdLA2gIR0CmAtg00m+kdX2UKGgGR7/hfbTMJQchaAdLBGgIR0CmA2AVXV9XdX2UKGgGR7+3A9FF2FFlaAdLAmgIR0CmAx/oq0+ldX2UKGgGR7/QhGH58BuGaAdLBGgIR0CmAqV8stkGdX2UKGgGR7+6yLQ5WBBiaAdLAmgIR0CmAulCb+cZdX2UKGgGR7/FnaFmFrVOaAdLAmgIR0CmAy+GoJiRdX2UKGgGR7/QPu5SWJJoaAdLA2gIR0CmA3yBTXJ6dX2UKGgGR7/QLGJemelLaAdLA2gIR0CmAsGDtgKGdX2UKGgGR7/A++M6zVtoaAdLAmgIR0CmA0PMKTjedX2UKGgGR7+jDVH4GlhxaAdLAWgIR0CmAsm65Gz9dX2UKGgGR7/Zrwe/5+H8aAdLBGgIR0CmAw1SwW30dX2UKGgGR7/Wqnm7rcCYaAdLA2gIR0CmA5Rhc7hfdX2UKGgGR7/BzbvgFX7taAdLAmgIR0CmAtmCiAUddX2UKGgGR7/QE4//vOQhaAdLA2gIR0CmA1v7FbV0dX2UKGgGR7+6O7xusLfDaAdLAmgIR0CmAx1ZcLSedX2UKGgGR7/HYkE9t/FzaAdLA2gIR0CmA7D7qIJrdX2UKGgGR7/SHwgDA8B/aAdLA2gIR0CmAvYyoGY8dX2UKGgGR7/Za5f+jua4aAdLBGgIR0CmA4Cbc45tdX2UKGgGR7/VcmjTKDChaAdLBGgIR0CmA0TYNAkcdX2UKGgGR7/BQla8pTddaAdLAmgIR0CmAwlQdjoZdX2UKGgGR7/M0KJEYwZgaAdLA2gIR0CmA8y5I6KcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (670 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.19710137126967311, "std_reward": 0.12009985830282321, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-29T13:33:36.042862"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b8f9055971bb70a1d5dfe08be9ecb2f7035a5149245247bf330e553caff0c63
|
3 |
+
size 2623
|