{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3213916200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3213916290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3213916320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32139163b0>", "_build": "<function ActorCriticPolicy._build at 0x7f3213916440>", "forward": "<function ActorCriticPolicy.forward at 0x7f32139164d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3213916560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32139165f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3213916680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3213916710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32139167a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3213916830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3213911a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696784657734993353, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALD5qz5z3B0/5mVkvlQNqL41OaQ9IPdSvQAAAAAAAAAAMzIxPr71Yj9LRTU8YQ+KviYd6z0E+iW9AAAAAAAAAADmL9k9SGOBuuL8czrpjDc2VsxCO8Qdi7kAAAAAAACAP6DTUz4HRFM/0esuvQzznr4GGgY+7lnEPAAAAAAAAAAAOk8HvhnQFT4qtkQ+oa6Evp8nPL08s7k8AAAAAAAAAACD74g+4GfPPjQRFr5vFZC+fduEPVdlib0AAAAAAAAAAJr9sb0plGG6a+qku6YzMjdhs207IO/yNgAAgD8AAAAAmthCvSlIFLraaqg4jSLgM4L4tTr30ce3AACAPwAAgD/NKEE9Fy8GPxxapL0q1Ju+gAoFvXi2r7sAAAAAAAAAAHOjg70UU8a8vTt/Pa8s371XP5Y97AmQPgAAgD8AAIA/Wqy9vVNdjD/oOUK+aXLKvhxF2b2e50e9AAAAAAAAAAAzxcm8KXBnuvp/mLr16Yq19W6qusPvsjkAAIA/AACAPwA6r70O4tk+TPsAPWY5gb6KoLS8aUDBPQAAAAAAAAAAAwx5vso/Kz94Eew9+oajvtUp37xtu746AAAAAAAAAAAzvRy8uIPyu64EuLwsZPq9IpZOPSr51T4AAIA/AACAPzPU/7wUGKG6qjt5ORqvVDSiuE45aUWPuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFpx/iHZbqMAWyUTVUCjAF0lEdAlqm0hNdqtnV9lChoBkdAcOmoUBXCCWgHTcMBaAhHQJaqrQZ4wAV1fZQoaAZHQHDroS6DoQpoB016AmgIR0CWrcB4Uvf1dX2UKGgGR8Aly3d9Dx9YaAdNBAFoCEdAlq3/mgam43V9lChoBkdAcENLeyiVSmgHTbsBaAhHQJawNnK4hEB1fZQoaAZHQEu/k5p8F6loB0v5aAhHQJa0CMPz4Dd1fZQoaAZHQG3R3FUADJVoB00ZAmgIR0CWtVAaef7KdX2UKGgGR0BwhjbN8ma6aAdN8wFoCEdAlrdI+GGmDXV9lChoBkdAby2Mir1dxGgHTTgBaAhHQJa3XJ1aGHp1fZQoaAZHQG3yXa8Hv+hoB00cA2gIR0CWuqmVZ9uxdX2UKGgGR0BxqQHfMwDeaAdNtgFoCEdAlrzI371qWXV9lChoBkdAcbvsA/9pAWgHTQEBaAhHQJa+JIPK+zt1fZQoaAZHQHA76cmShaloB03kAWgIR0CWvpmz0HyFdX2UKGgGR0Btak0BOpKjaAdN0gFoCEdAlr8STY/Vy3V9lChoBkdAcvtze40/GGgHTaYBaAhHQJbQF1HOKO11fZQoaAZHQHGs/zjFQ2xoB01uAWgIR0CW0JV0cOsldX2UKGgGR0BxhOaXrt3OaAdNYAFoCEdAltH6uW8h93V9lChoBkdAb94/h2nsLWgHTUwBaAhHQJbU72f02+B1fZQoaAZHQEsjQrtmcvxoB0v3aAhHQJbVmg2606Z1fZQoaAZHQG6P6xHG0eFoB01BAWgIR0CW1oQAuIykdX2UKGgGR0BvFugte2NOaAdNsQFoCEdAltbO6mO2iXV9lChoBkdAb7Bhy8zyjGgHTXEBaAhHQJbXQCbMHKR1fZQoaAZHQGRFwFC9h7VoB03oA2gIR0CW14h3qzJIdX2UKGgGR0AoBDwYtQKsaAdL3GgIR0CW2P9JSR8udX2UKGgGR0BwS1GoaUA1aAdNmgFoCEdAltmZHVf/m3V9lChoBkdAcV7suFpPAWgHTSUBaAhHQJbZy5byH211fZQoaAZHQHIu5t78ejpoB007AWgIR0CW2icKw6hhdX2UKGgGR0Bubi+rU9ZBaAdNLAFoCEdAltps7MgU13V9lChoBkdAcVT3X7Lt/mgHTVYBaAhHQJbdUzP8hs91fZQoaAZHQGSymATZg5RoB03oA2gIR0CW3Xj7ALy+dX2UKGgGR0BtKkPSUkfLaAdNLQFoCEdAlt2wJokAxXV9lChoBkdAcZii97F85WgHTawBaAhHQJbdzDVH4Gl1fZQoaAZHQDlulfqoqCpoB0vkaAhHQJbgDbj94u91fZQoaAZHQG0poZ62OQ1oB01LAWgIR0CW4bX+l0o0dX2UKGgGR0BERIsyzollaAdNDwFoCEdAluHoB7u2JHV9lChoBkdAbYrQk5ZKWmgHTU8BaAhHQJbjhqynk1d1fZQoaAZHQG5A08NhE0BoB02CAWgIR0CW5GFwT/Q0dX2UKGgGR0Buj5NmDlHSaAdNJgFoCEdAluRqAjIJaHV9lChoBkdAcHevfTCtR2gHTXABaAhHQJbkexUvPC51fZQoaAZHQHAoP47A+INoB01MAWgIR0CW56oqkM1CdX2UKGgGR8AiHKISDh99aAdNBQFoCEdAlugTVc2R73V9lChoBkdAZA78Lronr2gHTegDaAhHQJbpeTHKfWd1fZQoaAZHQHI2z3qRlpZoB018AWgIR0CW6te54GD+dX2UKGgGR0Bvdebd8Aq/aAdNXwFoCEdAlu3bkKeCkHV9lChoBkdAb1e/keZG8WgHTXoBaAhHQJbumUcGTs91fZQoaAZHQFEt6gdwNspoB00AAWgIR0CW8qmgam4zdX2UKGgGR0BxFwW9DhLoaAdNbgFoCEdAlvUxi5NGmXV9lChoBkdAcY7sasIVumgHTdYBaAhHQJb1RfVqesh1fZQoaAZHQG7OqKxcE/1oB01qAWgIR0CW9UN9H+ZPdX2UKGgGR0BtP59b5dnkaAdNcgFoCEdAlvhqy8jAz3V9lChoBkdAcJ2gDzRQamgHTSUBaAhHQJb7oA0bcXZ1fZQoaAZHQG70fzasZHdoB02PAWgIR0CW+58f3evZdX2UKGgGR0BvlXPX05EMaAdNRgFoCEdAlv3yNwR5DHV9lChoBkdAboRLdvbXYmgHTZ8BaAhHQJcPe7nPmgd1fZQoaAZHQGzT3OGCZndoB01GAWgIR0CXD+9VWCEpdX2UKGgGR0BwmKyMUAT7aAdNPgFoCEdAlxAZg1FYuHV9lChoBkdAcC/3cYZVGWgHTUkDaAhHQJcSXNnoPkJ1fZQoaAZHQHGpNSMtK7JoB02xAmgIR0CXElhP0qYrdX2UKGgGR0BywLTtsvZiaAdNRAFoCEdAlxK2iQDFInV9lChoBkdAbuVwWFev6mgHTS8BaAhHQJcTT4Ju2ql1fZQoaAZHQHBivKISDh9oB01TAWgIR0CXFKhRqGlAdX2UKGgGR0Bx4JjmSyMUaAdNUgFoCEdAlxamalUIcHV9lChoBkdARJDcqOLiuWgHS+doCEdAlxa6Vlf7anV9lChoBkdAcP+mDDjzZ2gHTZ0BaAhHQJcXkieNDMN1fZQoaAZHQGU0hgE2YOVoB03oA2gIR0CXGCJkXk5qdX2UKGgGR0A7zZUDMeOoaAdL5WgIR0CXGIk5ZKWcdX2UKGgGR0BxHKKyfL9uaAdNUwFoCEdAlxieB+Wnj3V9lChoBkdAOZ+LrHEMs2gHS/doCEdAlxi9cry1/nV9lChoBkdAb+2izsyBTWgHTWcBaAhHQJcZNqN6w+t1fZQoaAZHQHCzbQPZqVRoB02vAmgIR0CXGUXe3x4IdX2UKGgGR0Bx4ecOLBKuaAdNJwFoCEdAlxqSZBsyi3V9lChoBkdAbioth/iHZmgHTSIBaAhHQJcctLK3d9F1fZQoaAZHQG5b5K3/gixoB01CAWgIR0CXHYoDPnjidX2UKGgGR0BuPP8yeqaPaAdNRAFoCEdAlx2iV8kUsXV9lChoBkdAcoUKDCgsb2gHTUoBaAhHQJceylCTlkp1fZQoaAZHQGYYvsAvL5hoB03oA2gIR0CXIelruYx+dX2UKGgGR0BxgAqG1x82aAdNLgFoCEdAlyMBEWqLj3V9lChoBkdAbM3n003wTmgHTVkBaAhHQJcjJTn7pFF1fZQoaAZHQHBoQXZXdTJoB00zAWgIR0CXI8J+DvmYdX2UKGgGR0Budgu/UONHaAdNPQFoCEdAlyQvpUxVQ3V9lChoBkdAbkHW8RL9M2gHTaoBaAhHQJcknCvX9R91fZQoaAZHQHIheC04R29oB008AWgIR0CXJXD/lyR0dX2UKGgGR0BwPx+fAbhnaAdNXAFoCEdAlyYh+4LCvXV9lChoBkdAJqb0voNd7mgHS9doCEdAlyb0qYqoZXV9lChoBkdAcvewQlKK52gHTTMBaAhHQJcnNzgdfb91fZQoaAZHQHLleyE+PiloB01oAWgIR0CXJ2rXlKbsdX2UKGgGR0ByFIMuvlltaAdN/AFoCEdAlyrmQOnVG3V9lChoBkdAciOCe2/i52gHTegBaAhHQJcrALJCBwx1fZQoaAZHQHA2cwUQCjloB01MAWgIR0CXK0M5fdAPdX2UKGgGR0BtmjzPKMefaAdNSgFoCEdAly2XhGYrrnV9lChoBkdATp6jSG8Em2gHTRABaAhHQJcub3Zf2K51fZQoaAZHQDoatknTiKloB0v/aAhHQJcwNJ8OTaF1fZQoaAZHQEEvszl90A9oB0vmaAhHQJcydWJaaCt1fZQoaAZHQHA08QAdXDFoB01IAWgIR0CXMw+VTrE+dX2UKGgGR0BwiVme18b8aAdNTQFoCEdAlzMskdFOPHV9lChoBkdAcAZhoM8YAWgHTRsBaAhHQJczLiJfpll1fZQoaAZHQG6w256MR6FoB03hAWgIR0CXM/l+Vkc0dX2UKGgGR0BxS0VvddmhaAdNYwFoCEdAlzXxhc7henV9lChoBkdAcEwvcJtzjmgHTTYBaAhHQJc2TaufVZt1fZQoaAZHQG2S3l0YCQtoB01wAWgIR0CXOCc6vJRwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |