File size: 2,073 Bytes
b85e126
efda1d9
 
b85e126
 
 
 
 
 
 
 
 
efda1d9
 
 
 
 
b85e126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0763962
b85e126
0763962
 
b85e126
1cc17d9
 
 
 
 
b85e126
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language: ISO 639-1 code for your language, or `multilingual`
thumbnail: url to a thumbnail used in social sharing
tags:
- array
- of
- tags
datasets:
- array of dataset identifiers
metrics:
- array of metric identifiers
widget:
- text: "question: which description describes the word \" java \" best in the following\
    \ context? descriptions: [  \" A drink consisting of an infusion of ground coffee\
    \ beans \" ,  \" a platform-independent programming lanugage \" ,  or \" an island\
    \ in Indonesia to the south of Borneo \" ]  context: I like to drink ' java '\
    \ in the morning ."
---

# T5-large for Word Sense Disambiguation

This is the checkpoint for T5-large after being trained on the [SemCor 3.0 dataset](http://lcl.uniroma1.it/wsdeval/).

Additional information about this model:

* [The t5-large model page](https://huggingface.co/t5-large)
* [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
* [Official implementation by Google](https://github.com/google-research/text-to-text-transfer-transformer)

The model can be loaded to perform a few-shot classification like so:

```py
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

AutoModelForSeq2SeqLM.from_pretrained("jpelhaw/t5-word-sense-disambiguation")
AutoTokenizer.from_pretrained("jpelhaw/t5-word-sense-disambiguation")

input = 'question: which description describes the word " java " best in the following context? \
descriptions:[  " A drink consisting of an infusion of ground coffee beans " , 
                " a platform-independent programming lanugage "
                ,  or " an island in Indonesia to the south of Borneo " ] 
context: I like to drink " java " in the morning .'


example = tokenizer.tokenize(input, add_special_tokens=True)

answer = model.generate(input_ids=example['input_ids'], 
                                attention_mask=example['attention_mask'], 
                                max_length=135)
                                
# "a distinguishing trait"
```