Commit
•
20cdc2b
0
Parent(s):
Duplicate from Deci/DeciCoder-1b
Browse filesCo-authored-by: Itay Levy <itay-levy@users.noreply.huggingface.co>
- .gitattributes +35 -0
- README.md +180 -0
- config.json +28 -0
- configuration_decicoder.py +50 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_decicoder.py +253 -0
- special_tokens_map.json +26 -0
- tokenizer.json +0 -0
- tokenizer_config.json +30 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text generation
|
6 |
+
- Deci AI
|
7 |
+
- DeciCoder
|
8 |
+
programming_language:
|
9 |
+
- Java
|
10 |
+
- JavaScript
|
11 |
+
- Python
|
12 |
+
metrics:
|
13 |
+
- code_eval
|
14 |
+
inference: true
|
15 |
+
widget:
|
16 |
+
- text: 'def print_hello_world():'
|
17 |
+
example_title: Hello world
|
18 |
+
group: Python
|
19 |
+
model-index:
|
20 |
+
- name: DeciCoder-1b
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-generation
|
24 |
+
dataset:
|
25 |
+
type: nuprl/MultiPL-E
|
26 |
+
name: MultiPL-HumanEval (Python)
|
27 |
+
metrics:
|
28 |
+
- name: pass@1
|
29 |
+
type: pass@1
|
30 |
+
value: 0.191
|
31 |
+
verified: false
|
32 |
+
- task:
|
33 |
+
type: text-generation
|
34 |
+
dataset:
|
35 |
+
type: nuprl/MultiPL-E
|
36 |
+
name: MultiPL-HumanEval (JavaScript)
|
37 |
+
metrics:
|
38 |
+
- name: pass@1
|
39 |
+
type: pass@1
|
40 |
+
value: 0.184
|
41 |
+
verified: false
|
42 |
+
- task:
|
43 |
+
type: text-generation
|
44 |
+
dataset:
|
45 |
+
type: nuprl/MultiPL-E
|
46 |
+
name: MultiPL-HumanEval (Java)
|
47 |
+
metrics:
|
48 |
+
- name: pass@1
|
49 |
+
type: pass@1
|
50 |
+
value: 0.166
|
51 |
+
verified: false
|
52 |
+
datasets:
|
53 |
+
- bigcode/starcoderdata
|
54 |
+
---
|
55 |
+
|
56 |
+
# Model Card for DeciCoder 1B
|
57 |
+
|
58 |
+
DeciCoder 1B is a 1 billion parameter decoder-only code completion model
|
59 |
+
trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata).
|
60 |
+
The model uses Grouped Query Attention and has a context window of 2048
|
61 |
+
tokens. It was trained using a Fill-in-the-Middle training objective. The model's
|
62 |
+
architecture was generated by Deci's proprietary Neural Architecture
|
63 |
+
Search-based technology, AutoNAC.
|
64 |
+
|
65 |
+
## Model Details
|
66 |
+
|
67 |
+
- **Developed by:** Deci
|
68 |
+
- **Model type:** DeciCoder is an auto-regressive language model based on the transformer decoder architecture, using Grouped Query Attention.
|
69 |
+
- **Language(s):** Python, Java, JavaScript
|
70 |
+
- **License:** Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
71 |
+
|
72 |
+
## Model Architecture
|
73 |
+
|
74 |
+
| Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads | Hidden Size |
|
75 |
+
|:----------|:----------|:----------|:----------|:----------|:----------|
|
76 |
+
| 1.1B | 20 | 32 | 2048 | 4 | 2048 | |
|
77 |
+
|
78 |
+
|
79 |
+
- **Decoder layer:** Grouped Query Attention [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245)
|
80 |
+
- **Position Embeddings:** Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864)
|
81 |
+
|
82 |
+
## Uses
|
83 |
+
|
84 |
+
The model is intended to do single/multiline code completion from a
|
85 |
+
context window of up to 2048k tokens. It is *not* an instruction model
|
86 |
+
and commands like \"Write a function that computes the absolute value of
|
87 |
+
an integer,\" won't yield the desired results. A more effective approach
|
88 |
+
is to frame instructions in the style of source code comments (e.g. \#
|
89 |
+
this function calculates the absolute value of an integer) or to present
|
90 |
+
a function signature and docstring, enabling the model to complete the
|
91 |
+
function's body.
|
92 |
+
|
93 |
+
### How to Use
|
94 |
+
|
95 |
+
```bibtex
|
96 |
+
# pip install -q transformers
|
97 |
+
import torch
|
98 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
99 |
+
|
100 |
+
checkpoint = "Deci/DeciCoder-1b"
|
101 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
102 |
+
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
104 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device)
|
105 |
+
|
106 |
+
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
|
107 |
+
outputs = model.generate(inputs, max_new_tokens=100)
|
108 |
+
print(tokenizer.decode(outputs[0]))
|
109 |
+
```
|
110 |
+
|
111 |
+
### Attribution
|
112 |
+
|
113 |
+
DeciCoder was trained on StarCoder Training Dataset, filtered for
|
114 |
+
Python, Java, and Javascript code. For additional information, please
|
115 |
+
refer to [https://huggingface.co/datasets/bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata).
|
116 |
+
|
117 |
+
### Limitations
|
118 |
+
|
119 |
+
The model has undergone training with source code from Python, Java, and
|
120 |
+
JavaScript. While the primary language in the source is English, it does
|
121 |
+
contain other languages. Therefore, the model can produce code snippets
|
122 |
+
given some context. However, there\'s no assurance that the resulting
|
123 |
+
code will function as expected. It might be suboptimal, contain bugs, or
|
124 |
+
even exploits.
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Data
|
129 |
+
|
130 |
+
DeciCoder was trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata)
|
131 |
+
|
132 |
+
|
133 |
+
### Training Procedure
|
134 |
+
|
135 |
+
- **Warm-Up Steps**: 9000
|
136 |
+
- **Total Training Steps**: 284k
|
137 |
+
- **Total Tokens**: 446B
|
138 |
+
- **Global Batch Size**: 768
|
139 |
+
- **Optimizer**: AdamW
|
140 |
+
- **Optimizer Parameters**: beta1=0.9, beta2=0.95
|
141 |
+
- **Weight Decay**: 0.1
|
142 |
+
- **Learning Rate**: 4e-4
|
143 |
+
- **Learning Rate Schedule**: cosine
|
144 |
+
|
145 |
+
## Evaluation
|
146 |
+
|
147 |
+
Below are DeciCoder's pass@1 on MultiPL HumanEval scores
|
148 |
+
|
149 |
+
| Python | JavaScript | Java |
|
150 |
+
|:----------|:----------|:----------|
|
151 |
+
| 19.1% | 18.4% | 16.6% |
|
152 |
+
|
153 |
+
|
154 |
+
### Runtime Benchmarks
|
155 |
+
|
156 |
+
|Inference Tool/Hardware | A10 (tokens/sec) |A100 (tokens/sec) |
|
157 |
+
|:----------|:----------|:----------|
|
158 |
+
| PyTorch | 1,364.2 | 3,244.4 |
|
159 |
+
| Infery LLM | 3,889.3 | 11,676.8 |
|
160 |
+
|
161 |
+
- Throughput (tokens/sec) - Measured with optimal batch size per hardware - A10 on BS 128, A100 on BS 512
|
162 |
+
|
163 |
+
## Documentation
|
164 |
+
|
165 |
+
- [Notebook](https://colab.research.google.com/drive/1JCxvBsWCZKHfIcHSMVf7GZCs3ClMQPjs)
|
166 |
+
- Blog post: [Introducing DeciCoder: The New Gold Standard in Efficient and Accurate Code Generation](https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/)
|
167 |
+
- Questions:Feel free to contact us via our [Discord Community!](https://discord.com/invite/p9ecgRhDR8/)
|
168 |
+
|
169 |
+
## How to Cite
|
170 |
+
|
171 |
+
Please cite this model using this format.
|
172 |
+
|
173 |
+
```bibtex
|
174 |
+
@misc{DeciFoundationModels,
|
175 |
+
title = {DeciCoder},
|
176 |
+
author = {DeciAI Research Team},
|
177 |
+
year = {2023}
|
178 |
+
url={[https://huggingface.co/deci/decicoder-1b](https://huggingface.co/deci/decicoder-1b)},
|
179 |
+
}
|
180 |
+
```
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeciCoderForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_decicoder.DeciCoderConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_decicoder.DeciCoderForCausalLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"eos_token_id": 0,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5888,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 20,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"use_bfloat16": true,
|
25 |
+
"transformers_version": "4.31.0.dev0",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 49152
|
28 |
+
}
|
configuration_decicoder.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from packaging import version
|
2 |
+
import transformers
|
3 |
+
if version.parse(transformers.__version__) < version.parse("4.31.0"):
|
4 |
+
raise ImportError(
|
5 |
+
f"You are using transformers=={transformers.__version__}, but transformers>=4.31.0 is required to use DeciCoder. Please upgrade transformers."
|
6 |
+
)
|
7 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
14 |
+
|
15 |
+
|
16 |
+
class DeciCoderConfig(LlamaConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
19 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
20 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
21 |
+
|
22 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
23 |
+
documentation from [`PretrainedConfig`] for more information.
|
24 |
+
|
25 |
+
|
26 |
+
Args:
|
27 |
+
naive_attention_prefill (`bool`, *optional*, defaults to False):
|
28 |
+
Whether to use naive matmul or scaled dot product attention during prefill.
|
29 |
+
naive_attention_decode_batched (`bool`, *optional*, defaults to True):
|
30 |
+
Whether to use naive matmul or scaled dot product attention during decode for batch_size > 1.
|
31 |
+
naive_attention_decode_single (`bool`, *optional*, defaults to False):
|
32 |
+
Whether to use naive matmul or scaled dot product attention during decode for batch_size == 1.
|
33 |
+
|
34 |
+
|
35 |
+
```"""
|
36 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
naive_attention_prefill: bool = False,
|
41 |
+
naive_attention_decode_batched: bool = True,
|
42 |
+
naive_attention_decode_single: bool = False,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
self.naive_attention_prefill = naive_attention_prefill
|
46 |
+
self.naive_attention_decode_batched = naive_attention_decode_batched
|
47 |
+
self.naive_attention_decode_single = naive_attention_decode_single
|
48 |
+
|
49 |
+
super().__init__(**kwargs,)
|
50 |
+
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:510256faa3d388cad1dcbc30c39d32f9289410a399f4c0435bec27ec135c6f0f
|
3 |
+
size 2227364400
|
modeling_decicoder.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright and license here
|
3 |
+
""" PyTorch DeciCoder model."""
|
4 |
+
import math
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from packaging import version
|
12 |
+
import transformers
|
13 |
+
if version.parse(transformers.__version__) < version.parse("4.31.0"):
|
14 |
+
raise ImportError(
|
15 |
+
f"You are using transformers=={transformers.__version__}, but transformers>=4.31.0 is required to use DeciCoder. Please upgrade transformers."
|
16 |
+
)
|
17 |
+
from transformers.models.llama.modeling_llama import LlamaMLP, LlamaRMSNorm, LlamaAttention, apply_rotary_pos_emb, \
|
18 |
+
repeat_kv, LlamaPreTrainedModel, LLAMA_START_DOCSTRING, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
|
19 |
+
from transformers.utils import add_start_docstrings
|
20 |
+
|
21 |
+
from .configuration_decicoder import DeciCoderConfig
|
22 |
+
|
23 |
+
_CONFIG_FOR_DOC = "DeciCoderConfig"
|
24 |
+
|
25 |
+
|
26 |
+
class DeciCoderAttention(LlamaAttention):
|
27 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
28 |
+
|
29 |
+
def __init__(self, config: DeciCoderConfig):
|
30 |
+
nn.Module.__init__(self)
|
31 |
+
self.config = config
|
32 |
+
self.hidden_size = config.hidden_size
|
33 |
+
self.num_heads = config.num_attention_heads
|
34 |
+
self.head_dim = self.hidden_size // self.num_heads
|
35 |
+
self.num_key_value_heads = config.num_key_value_heads
|
36 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
37 |
+
self.pretraining_tp = config.pretraining_tp
|
38 |
+
self.max_position_embeddings = config.max_position_embeddings
|
39 |
+
self.rope_theta = getattr(config, 'rope_theta', None)
|
40 |
+
|
41 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
42 |
+
raise ValueError(
|
43 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
44 |
+
f" and `num_heads`: {self.num_heads})."
|
45 |
+
)
|
46 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
47 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
48 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
49 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
50 |
+
|
51 |
+
self.naive_attention_prefill = config.naive_attention_prefill
|
52 |
+
self.naive_attention_decode_batched = config.naive_attention_decode_batched
|
53 |
+
self.naive_attention_decode_single = config.naive_attention_decode_single
|
54 |
+
self._init_rope()
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
hidden_states: torch.Tensor,
|
59 |
+
attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
position_ids: Optional[torch.LongTensor] = None,
|
61 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
62 |
+
output_attentions: bool = False,
|
63 |
+
use_cache: bool = False,
|
64 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
65 |
+
bsz, q_len, _ = hidden_states.size()
|
66 |
+
if past_key_value is None:
|
67 |
+
is_decode = False
|
68 |
+
else:
|
69 |
+
is_decode = True
|
70 |
+
if self.pretraining_tp > 1:
|
71 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
72 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
73 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
74 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
75 |
+
|
76 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
77 |
+
query_states = torch.cat(query_states, dim=-1)
|
78 |
+
|
79 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
80 |
+
key_states = torch.cat(key_states, dim=-1)
|
81 |
+
|
82 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
83 |
+
value_states = torch.cat(value_states, dim=-1)
|
84 |
+
|
85 |
+
else:
|
86 |
+
query_states = self.q_proj(hidden_states)
|
87 |
+
key_states = self.k_proj(hidden_states)
|
88 |
+
value_states = self.v_proj(hidden_states)
|
89 |
+
|
90 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
91 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
92 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
93 |
+
|
94 |
+
kv_seq_len = key_states.shape[-2]
|
95 |
+
if past_key_value is not None:
|
96 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
97 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
98 |
+
|
99 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
100 |
+
|
101 |
+
if past_key_value is not None:
|
102 |
+
# reuse k, v, self_attention
|
103 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
104 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
105 |
+
|
106 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
107 |
+
|
108 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
109 |
+
if is_decode:
|
110 |
+
query_states = query_states.view(bsz, self.num_key_value_heads, self.num_key_value_groups, self.head_dim)
|
111 |
+
if self.naive_attention_decode_batched and bsz > 1 or self.naive_attention_decode_single and bsz == 1:
|
112 |
+
attn_weights = (query_states @ key_states.transpose(-2, -1)) / math.sqrt(key_states.size(-1))
|
113 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
114 |
+
if attention_mask is not None:
|
115 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
116 |
+
raise ValueError(
|
117 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
118 |
+
)
|
119 |
+
attn_weights = attn_weights + attention_mask
|
120 |
+
|
121 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
122 |
+
else:
|
123 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=False,
|
124 |
+
dropout_p=0.0)
|
125 |
+
attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size)
|
126 |
+
|
127 |
+
else:
|
128 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
129 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
130 |
+
|
131 |
+
if not self.naive_attention_prefill:
|
132 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True,
|
133 |
+
dropout_p=0.0)
|
134 |
+
else:
|
135 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
136 |
+
# attn_weights = (query_states @ key_states.transpose(-2, -1)) / math.sqrt(key_states.size(-1))
|
137 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
138 |
+
raise ValueError(
|
139 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
140 |
+
f" {attn_weights.size()}"
|
141 |
+
)
|
142 |
+
|
143 |
+
if attention_mask is not None:
|
144 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
145 |
+
raise ValueError(
|
146 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
147 |
+
)
|
148 |
+
attn_weights = attn_weights + attention_mask
|
149 |
+
|
150 |
+
# upcast attention to fp32
|
151 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
152 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
153 |
+
|
154 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
155 |
+
raise ValueError(
|
156 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
157 |
+
f" {attn_output.size()}"
|
158 |
+
)
|
159 |
+
|
160 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
|
161 |
+
# attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
162 |
+
|
163 |
+
if self.pretraining_tp > 1:
|
164 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
165 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
166 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
167 |
+
else:
|
168 |
+
attn_output = self.o_proj(attn_output)
|
169 |
+
|
170 |
+
if not output_attentions:
|
171 |
+
attn_weights = None
|
172 |
+
|
173 |
+
return attn_output, attn_weights, past_key_value
|
174 |
+
|
175 |
+
|
176 |
+
class DeciCoderDecoderLayer(LlamaDecoderLayer):
|
177 |
+
def __init__(self, config: DeciCoderConfig):
|
178 |
+
nn.Module.__init__(self)
|
179 |
+
self.hidden_size = config.hidden_size
|
180 |
+
self.self_attn = DeciCoderAttention(config=config)
|
181 |
+
self.mlp = LlamaMLP(config)
|
182 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
183 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
184 |
+
|
185 |
+
|
186 |
+
@add_start_docstrings(
|
187 |
+
"The bare DeciCoder Model outputting raw hidden-states without any specific head on top.",
|
188 |
+
LLAMA_START_DOCSTRING,
|
189 |
+
)
|
190 |
+
class DeciCoderPreTrainedModel(LlamaPreTrainedModel):
|
191 |
+
config_class = DeciCoderConfig
|
192 |
+
_no_split_modules = ["DeciCoderDecoderLayer"]
|
193 |
+
_keys_to_ignore_on_load_missing = ["self_attn.rotary_emb.inv_freq"]
|
194 |
+
|
195 |
+
|
196 |
+
@add_start_docstrings(
|
197 |
+
"The bare DeciCoder Model outputting raw hidden-states without any specific head on top.",
|
198 |
+
LLAMA_START_DOCSTRING,
|
199 |
+
)
|
200 |
+
class DeciCoderModel(LlamaModel, DeciCoderPreTrainedModel):
|
201 |
+
"""
|
202 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciCoderDecoderLayer`]
|
203 |
+
|
204 |
+
Args:
|
205 |
+
config: DeciCoderConfig
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, config: DeciCoderConfig):
|
209 |
+
DeciCoderPreTrainedModel.__init__(self, config)
|
210 |
+
self.padding_idx = config.pad_token_id
|
211 |
+
self.vocab_size = config.vocab_size
|
212 |
+
|
213 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
214 |
+
self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
215 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
216 |
+
|
217 |
+
self.gradient_checkpointing = False
|
218 |
+
# Initialize weights and apply final processing
|
219 |
+
self.post_init()
|
220 |
+
|
221 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
222 |
+
self._validate_config_supports_attention_mask(attention_mask, input_shape, past_key_values_length)
|
223 |
+
return LlamaModel._prepare_decoder_attention_mask(
|
224 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length)
|
225 |
+
|
226 |
+
def _validate_config_supports_attention_mask(self, attention_mask, input_shape, past_key_values_length):
|
227 |
+
is_decode = past_key_values_length > 0
|
228 |
+
if not torch.all(torch.eq(attention_mask, 1)).item():
|
229 |
+
if is_decode:
|
230 |
+
if input_shape[0] == 1 and not self.config.naive_attention_decode_single:
|
231 |
+
raise ValueError(
|
232 |
+
"For support of custom attention masks please set naive_attention_decode_single to True in the "
|
233 |
+
"config")
|
234 |
+
elif input_shape[0] > 1 and not self.config.naive_attention_decode_batched:
|
235 |
+
raise ValueError(
|
236 |
+
"For support of custom attention masks please set naive_attention_decode_batched to True in the"
|
237 |
+
"config")
|
238 |
+
else:
|
239 |
+
if not self.config.naive_attention_prefill:
|
240 |
+
raise ValueError("For support of custom attention masks please set naive_attention_prefill to "
|
241 |
+
"True in the config")
|
242 |
+
|
243 |
+
|
244 |
+
class DeciCoderForCausalLM(LlamaForCausalLM, DeciCoderPreTrainedModel):
|
245 |
+
def __init__(self, config):
|
246 |
+
DeciCoderPreTrainedModel.__init__(self, config)
|
247 |
+
self.model = DeciCoderModel(config)
|
248 |
+
self.pretraining_tp = config.pretraining_tp
|
249 |
+
self.vocab_size = config.vocab_size
|
250 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
251 |
+
|
252 |
+
# Initialize weights and apply final processing
|
253 |
+
self.post_init()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<fim_prefix>",
|
5 |
+
"<fim_middle>",
|
6 |
+
"<fim_suffix>",
|
7 |
+
"<fim_pad>",
|
8 |
+
"<filename>",
|
9 |
+
"<gh_stars>",
|
10 |
+
"<issue_start>",
|
11 |
+
"<issue_comment>",
|
12 |
+
"<issue_closed>",
|
13 |
+
"<jupyter_start>",
|
14 |
+
"<jupyter_text>",
|
15 |
+
"<jupyter_code>",
|
16 |
+
"<jupyter_output>",
|
17 |
+
"<empty_output>",
|
18 |
+
"<commit_before>",
|
19 |
+
"<commit_msg>",
|
20 |
+
"<commit_after>",
|
21 |
+
"<reponame>"
|
22 |
+
],
|
23 |
+
"bos_token": "<|endoftext|>",
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"unk_token": "<|endoftext|>"
|
26 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"additional_special_tokens": [
|
4 |
+
"<|endoftext|>",
|
5 |
+
"<fim_prefix>",
|
6 |
+
"<fim_middle>",
|
7 |
+
"<fim_suffix>",
|
8 |
+
"<fim_pad>",
|
9 |
+
"<filename>",
|
10 |
+
"<gh_stars>",
|
11 |
+
"<issue_start>",
|
12 |
+
"<issue_comment>",
|
13 |
+
"<issue_closed>",
|
14 |
+
"<jupyter_start>",
|
15 |
+
"<jupyter_text>",
|
16 |
+
"<jupyter_code>",
|
17 |
+
"<jupyter_output>",
|
18 |
+
"<empty_output>",
|
19 |
+
"<commit_before>",
|
20 |
+
"<commit_msg>",
|
21 |
+
"<commit_after>",
|
22 |
+
"<reponame>"
|
23 |
+
],
|
24 |
+
"bos_token": "<|endoftext|>",
|
25 |
+
"eos_token": "<|endoftext|>",
|
26 |
+
"model_max_length": 1000000000000000019884624838656,
|
27 |
+
"tokenizer_class": "GPT2Tokenizer",
|
28 |
+
"unk_token": "<|endoftext|>",
|
29 |
+
"vocab_size": 49152
|
30 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|