PandaReachDense-v2-2.0
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +101 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.70 +/- 0.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c40ab48aec44ab26717f16116f6285c0b8ae83b6d43208b970056804df8f232
|
3 |
+
size 585896
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51d01f4670>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f51d01f80f0>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
256,
|
17 |
+
256
|
18 |
+
],
|
19 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
20 |
+
"optimizer_kwargs": {
|
21 |
+
"alpha": 0.99,
|
22 |
+
"eps": 1e-05,
|
23 |
+
"weight_decay": 0
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
28 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
29 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
30 |
+
"_shape": null,
|
31 |
+
"dtype": null,
|
32 |
+
"_np_random": null
|
33 |
+
},
|
34 |
+
"action_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
3
|
40 |
+
],
|
41 |
+
"low": "[-1. -1. -1.]",
|
42 |
+
"high": "[1. 1. 1.]",
|
43 |
+
"bounded_below": "[ True True True]",
|
44 |
+
"bounded_above": "[ True True True]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"n_envs": 4,
|
48 |
+
"num_timesteps": 345544,
|
49 |
+
"_total_timesteps": 1000000,
|
50 |
+
"_num_timesteps_at_start": 0,
|
51 |
+
"seed": null,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1675632855027299910,
|
54 |
+
"learning_rate": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVLQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLB0tDQxp0AKABfABkAWQCZANnA2QEZAVkBGcDoQNTAJQoTkcAAAAAAAAAAEc/4AAAAAAAAEc/8AAAAAAAAEc/Gjbi6xxDLUc/UGJN0vGp/HSUjAJucJSMBmludGVycJSGlIwBdJSFlIwfPGlweXRob24taW5wdXQtMzgtNWFlZDA3NDk0ZTNkPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgWaBCMDF9fcXVhbG5hbWVfX5RoEIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoCmgAjAlzdWJpbXBvcnSUk5SMBW51bXB5lIWUUpRzdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"tensorboard_log": "logs",
|
59 |
+
"lr_schedule": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gAWVLQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLB0tDQxp0AKABfABkAWQCZANnA2QEZAVkBGcDoQNTAJQoTkcAAAAAAAAAAEc/4AAAAAAAAEc/8AAAAAAAAEc/Gjbi6xxDLUc/UGJN0vGp/HSUjAJucJSMBmludGVycJSGlIwBdJSFlIwfPGlweXRob24taW5wdXQtMzgtNWFlZDA3NDk0ZTNkPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgWaBCMDF9fcXVhbG5hbWVfX5RoEIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoCmgAjAlzdWJpbXBvcnSUk5SMBW51bXB5lIWUUpRzdYaUhlIwLg=="
|
62 |
+
},
|
63 |
+
"_last_obs": {
|
64 |
+
":type:": "<class 'collections.OrderedDict'>",
|
65 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjyqVP1TlAb/u5Z4+Kh9zvmQJEj/T7OC+Q6OKP9Eig78Q6qC/1L4hv2prgD5MxTg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC9jNP9tqe78gARA/i3WNvuHPgD+3pE+/M1reP0Mhvb8o8Ka/oAudPXmtmD5uih8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPKpU/VOUBv+7lnj6XQLU9K4VlP2D/Sr4qH3O+ZAkSP9Ps4L5iGD4/HWl8P9Zp6D5Do4o/0SKDvxDqoL/+s5+9txYjv4MxVj/UviG/amuAPkzFOD/d6je/FO6iv4ZTZL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
66 |
+
"achieved_goal": "[[ 1.1653613 -0.5074055 0.31034797]\n [-0.23742357 0.5704558 -0.43930683]\n [ 1.0831074 -1.0245 -1.257143 ]\n [-0.63181806 0.2508195 0.7217605 ]]",
|
67 |
+
"desired_goal": "[[ 1.6081556 -0.98209924 0.56251717]\n [-0.2762874 1.006344 -0.8111071 ]\n [ 1.7371277 -1.4775776 -1.304204 ]\n [ 0.07668233 0.2981985 0.623206 ]]",
|
68 |
+
"observation": "[[ 1.1653613 -0.5074055 0.31034797 0.0885021 0.89656323 -0.1982398 ]\n [-0.23742357 0.5704558 -0.43930683 0.74255955 0.9859789 0.45393246]\n [ 1.0831074 -1.0245 -1.257143 -0.07798003 -0.63706535 0.836693 ]\n [-0.63181806 0.2508195 0.7217605 -0.7184275 -1.2728906 -0.89189947]]"
|
69 |
+
},
|
70 |
+
"_last_episode_starts": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
73 |
+
},
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'collections.OrderedDict'>",
|
76 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASXt0vCcGfjzzC4k+Xap1PeUmezyQjSw+uR/cvSAevz1LO2M8CTWqPHpYNbyfbDs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
77 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
78 |
+
"desired_goal": "[[-0.01492197 0.0155044 0.2676693 ]\n [ 0.05997692 0.0153291 0.16850877]\n [-0.10748238 0.09331918 0.01386912]\n [ 0.02077724 -0.01106846 0.18303154]]",
|
79 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
80 |
+
},
|
81 |
+
"_episode_num": 0,
|
82 |
+
"use_sde": false,
|
83 |
+
"sde_sample_freq": -1,
|
84 |
+
"_current_progress_remaining": 0.65448,
|
85 |
+
"ep_info_buffer": {
|
86 |
+
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7wOQ2sRpAcCUhpRSlIwBbJRLMowBdJRHQIjvORq46Op1fZQoaAZoCWgPQwgZ6NoX0MsAwJSGlFKUaBVLMmgWR0CI7cPHT7VKdX2UKGgGaAloD0MIgq59Ab2w/L+UhpRSlGgVSzJoFkdAiOy065oXbnV9lChoBmgJaA9DCFnaqbncoP6/lIaUUpRoFUsyaBZHQIjrpigCfYl1fZQoaAZoCWgPQwjWkLjH0qcDwJSGlFKUaBVLMmgWR0CI8nCpm29ddX2UKGgGaAloD0MI0EVDxqM0AsCUhpRSlGgVSzJoFkdAiPD8FyJbdXV9lChoBmgJaA9DCFa5UPnX0gTAlIaUUpRoFUsyaBZHQIjv7SNOuaF1fZQoaAZoCWgPQwiDonkAizwHwJSGlFKUaBVLMmgWR0CI7t37DVH4dX2UKGgGaAloD0MIAvBPqRKFAsCUhpRSlGgVSzJoFkdAiPWybYsd1nV9lChoBmgJaA9DCFUWhV0UvQTAlIaUUpRoFUsyaBZHQIj0PTodMkB1fZQoaAZoCWgPQwgAyt+9o6YAwJSGlFKUaBVLMmgWR0CI8y4xUNrkdX2UKGgGaAloD0MIyf/k794RB8CUhpRSlGgVSzJoFkdAiPIf7iyY5XV9lChoBmgJaA9DCMH+69y02f6/lIaUUpRoFUsyaBZHQIj5Hl+3H7x1fZQoaAZoCWgPQwjQnWD/dY4BwJSGlFKUaBVLMmgWR0CI96k0rK/3dX2UKGgGaAloD0MIM6mhDcAmBMCUhpRSlGgVSzJoFkdAiPaayrxRVXV9lChoBmgJaA9DCGub4nFRjQXAlIaUUpRoFUsyaBZHQIj1i8e0Xxh1fZQoaAZoCWgPQwh/oNy279ECwJSGlFKUaBVLMmgWR0CI/Jpu/DcedX2UKGgGaAloD0MISkONQpI5AcCUhpRSlGgVSzJoFkdAiPsmM4tHx3V9lChoBmgJaA9DCEn0MorlNgLAlIaUUpRoFUsyaBZHQIj6F6sySFJ1fZQoaAZoCWgPQwhNh07PuxEBwJSGlFKUaBVLMmgWR0CI+Qj2zv7WdX2UKGgGaAloD0MIm3KFd7lIBMCUhpRSlGgVSzJoFkdAiP/86/7BPHV9lChoBmgJaA9DCHwOLEfIgAHAlIaUUpRoFUsyaBZHQIj+h8jRlYl1fZQoaAZoCWgPQwhBSBYwgRsBwJSGlFKUaBVLMmgWR0CI/XivxH5KdX2UKGgGaAloD0MIogkUsYihA8CUhpRSlGgVSzJoFkdAiPxph4MWoHV9lChoBmgJaA9DCGFtjJ3w8gPAlIaUUpRoFUsyaBZHQIkDX3N9ph51fZQoaAZoCWgPQwguyJbl65IBwJSGlFKUaBVLMmgWR0CJAenDR+jNdX2UKGgGaAloD0MIvaseMA85AsCUhpRSlGgVSzJoFkdAiQDahpQDWHV9lChoBmgJaA9DCMlWl1MCwgPAlIaUUpRoFUsyaBZHQIj/y2OQyRB1fZQoaAZoCWgPQwgpPj4hO68DwJSGlFKUaBVLMmgWR0CJBspR4yGjdX2UKGgGaAloD0MICOdTxyqlAcCUhpRSlGgVSzJoFkdAiQVXVbzK93V9lChoBmgJaA9DCGk4ZW6+UQHAlIaUUpRoFUsyaBZHQIkESQmu1Wt1fZQoaAZoCWgPQwgOgo5WteQDwJSGlFKUaBVLMmgWR0CJAzsKsuFpdX2UKGgGaAloD0MIsaTcfY5vAsCUhpRSlGgVSzJoFkdAiQppswco6XV9lChoBmgJaA9DCHPxtz1BogLAlIaUUpRoFUsyaBZHQIkI9GiHqNZ1fZQoaAZoCWgPQwhQbtv3qH8BwJSGlFKUaBVLMmgWR0CJB+VGkN4JdX2UKGgGaAloD0MIM8SxLm6DAsCUhpRSlGgVSzJoFkdAiQbWfbsWwnV9lChoBmgJaA9DCDi/YaJBiv6/lIaUUpRoFUsyaBZHQIkOGdK/VRV1fZQoaAZoCWgPQwj/lCpR9lb+v5SGlFKUaBVLMmgWR0CJDKSgXdj5dX2UKGgGaAloD0MIHH433bLD/7+UhpRSlGgVSzJoFkdAiQuVp0wJxHV9lChoBmgJaA9DCG0a22tBzwLAlIaUUpRoFUsyaBZHQIkKhsbedkJ1fZQoaAZoCWgPQwjWbyamCzEGwJSGlFKUaBVLMmgWR0CJEbaOgg5jdX2UKGgGaAloD0MIBHKJIw+ECMCUhpRSlGgVSzJoFkdAiRBBZha1TnV9lChoBmgJaA9DCDV5ymq6XgHAlIaUUpRoFUsyaBZHQIkPM23rleZ1fZQoaAZoCWgPQwjtRbQdU5cBwJSGlFKUaBVLMmgWR0CJDiSt/4IsdX2UKGgGaAloD0MIYLGGi9xTBMCUhpRSlGgVSzJoFkdAiRUL3bmEG3V9lChoBmgJaA9DCMUB9Pv+zQPAlIaUUpRoFUsyaBZHQIkTlhXr+o91fZQoaAZoCWgPQwiPpnoy/+gCwJSGlFKUaBVLMmgWR0CJEobZvkzXdX2UKGgGaAloD0MIWybD8XzGDMCUhpRSlGgVSzJoFkdAiRF3rMTviXV9lChoBmgJaA9DCLdFmQ0yqQDAlIaUUpRoFUsyaBZHQIkYd9nbqQl1fZQoaAZoCWgPQwg/kSdJ18wBwJSGlFKUaBVLMmgWR0CJFwJY1YQrdX2UKGgGaAloD0MIe737473qBsCUhpRSlGgVSzJoFkdAiRXzTfBN23V9lChoBmgJaA9DCN3PKcjPxv+/lIaUUpRoFUsyaBZHQIkU5EfDDTB1fZQoaAZoCWgPQwjdtu9Rf/38v5SGlFKUaBVLMmgWR0CJG9kbPyCndX2UKGgGaAloD0MIZyyazk4mAcCUhpRSlGgVSzJoFkdAiRpjghr303V9lChoBmgJaA9DCBe5p6s7FgLAlIaUUpRoFUsyaBZHQIkZVMj/uLJ1fZQoaAZoCWgPQwi3fvrPmp8DwJSGlFKUaBVLMmgWR0CJGEYekpI+dX2UKGgGaAloD0MIBrr2BfQCAMCUhpRSlGgVSzJoFkdAiR9kj5bhWHV9lChoBmgJaA9DCHPaU3JO7P+/lIaUUpRoFUsyaBZHQIkd8afjCHh1fZQoaAZoCWgPQwixw5j093IEwJSGlFKUaBVLMmgWR0CJHOVt4zJqdX2UKGgGaAloD0MIrFRQUfWrAsCUhpRSlGgVSzJoFkdAiRvYk/r0KHV9lChoBmgJaA9DCHV4COOncf6/lIaUUpRoFUsyaBZHQIkiviT+vQp1fZQoaAZoCWgPQwgP8Q9behQBwJSGlFKUaBVLMmgWR0CJIUjFAE+xdX2UKGgGaAloD0MIAmN9A5M7A8CUhpRSlGgVSzJoFkdAiSA59uxbCHV9lChoBmgJaA9DCCAqjZjZ5wHAlIaUUpRoFUsyaBZHQIkfKw8nuzB1fZQoaAZoCWgPQwjrxyb5EV8CwJSGlFKUaBVLMmgWR0CJJhreIl+mdX2UKGgGaAloD0MInn5QFym0AsCUhpRSlGgVSzJoFkdAiSSl05lvqHV9lChoBmgJaA9DCKyL22gArwDAlIaUUpRoFUsyaBZHQIkjltygf2d1fZQoaAZoCWgPQwhnnIaowj8BwJSGlFKUaBVLMmgWR0CJIogpz90jdX2UKGgGaAloD0MIYFrUJ7mDAMCUhpRSlGgVSzJoFkdAiSmJQtSQ5nV9lChoBmgJaA9DCO1Ky0i9Z/y/lIaUUpRoFUsyaBZHQIkoE94eLeh1fZQoaAZoCWgPQwhjDoKOVvX9v5SGlFKUaBVLMmgWR0CJJwSeRPoFdX2UKGgGaAloD0MIjZYDPdR2/b+UhpRSlGgVSzJoFkdAiSX2K/EfknV9lChoBmgJaA9DCEYm4NdI0gHAlIaUUpRoFUsyaBZHQIktDDwYtQN1fZQoaAZoCWgPQwiKPbSPFZwAwJSGlFKUaBVLMmgWR0CJK5bTtsvadX2UKGgGaAloD0MIRX9o5smVAMCUhpRSlGgVSzJoFkdAiSqJMYdhiXV9lChoBmgJaA9DCCfYf52bdvq/lIaUUpRoFUsyaBZHQIkpe8VYZEV1fZQoaAZoCWgPQwiyDkdX6Y4AwJSGlFKUaBVLMmgWR0CJMKMtsenydX2UKGgGaAloD0MI3rBtUWZD97+UhpRSlGgVSzJoFkdAiS8trCWNWHV9lChoBmgJaA9DCBYXR+Umqvq/lIaUUpRoFUsyaBZHQIkuHp2U0N11fZQoaAZoCWgPQwhGQlvOpbj/v5SGlFKUaBVLMmgWR0CJLRC79Q40dX2UKGgGaAloD0MIEoWWdf8Y+7+UhpRSlGgVSzJoFkdAiTPoxxkupXV9lChoBmgJaA9DCNOf/UgRWfO/lIaUUpRoFUsyaBZHQIkyc0YTCch1fZQoaAZoCWgPQwgLDcSymQMAwJSGlFKUaBVLMmgWR0CJMWQ5FPSEdX2UKGgGaAloD0MIlj50QX1L/r+UhpRSlGgVSzJoFkdAiTBWbPQfIXV9lChoBmgJaA9DCAXbiCe72f6/lIaUUpRoFUsyaBZHQIk3WMyad+Z1fZQoaAZoCWgPQwiIgEOoUvP6v5SGlFKUaBVLMmgWR0CJNeOby6MBdX2UKGgGaAloD0MICmXh62sd/L+UhpRSlGgVSzJoFkdAiTTUzj3mFXV9lChoBmgJaA9DCJzB3y9mCwDAlIaUUpRoFUsyaBZHQIkzxjjJdSl1fZQoaAZoCWgPQwjxvFRszOv9v5SGlFKUaBVLMmgWR0CJOsOXmeUZdX2UKGgGaAloD0MIX9Gt1/RAAMCUhpRSlGgVSzJoFkdAiTlPRZ2ZA3V9lChoBmgJaA9DCFWgFoOHafu/lIaUUpRoFUsyaBZHQIk4QJVsDW91fZQoaAZoCWgPQwhyameY2lL9v5SGlFKUaBVLMmgWR0CJNzHMEA5rdX2UKGgGaAloD0MIhsq/llcu/b+UhpRSlGgVSzJoFkdAiT4cf/3nIXV9lChoBmgJaA9DCM0Ew7mG2fu/lIaUUpRoFUsyaBZHQIk8ptxdY4h1fZQoaAZoCWgPQwikcD0K16P/v5SGlFKUaBVLMmgWR0CJO5g9/z8QdX2UKGgGaAloD0MI7nvUX68QAsCUhpRSlGgVSzJoFkdAiTqK9PDYRXV9lChoBmgJaA9DCHJO7KF9bPq/lIaUUpRoFUsyaBZHQIlBqL4vexh1fZQoaAZoCWgPQwg1QdR9ADIDwJSGlFKUaBVLMmgWR0CJQDPFefI0dX2UKGgGaAloD0MIfLWjOEc9AcCUhpRSlGgVSzJoFkdAiT8nHNorWnV9lChoBmgJaA9DCJjaUgd5/fq/lIaUUpRoFUsyaBZHQIk+GOXE61d1ZS4="
|
88 |
+
},
|
89 |
+
"ep_success_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
+
},
|
93 |
+
"_n_updates": 8638,
|
94 |
+
"n_steps": 10,
|
95 |
+
"gamma": 0.99,
|
96 |
+
"gae_lambda": 1.0,
|
97 |
+
"ent_coef": 0.0,
|
98 |
+
"vf_coef": 0.5,
|
99 |
+
"max_grad_norm": 0.5,
|
100 |
+
"normalize_advantage": false
|
101 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f270368ff9cb109d68f8381955fc7e86cb5862457098855a994baeca5c4a5c35
|
3 |
+
size 283467
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a325b8981fce605c7749540d4869c5febba7580fabd5039575a502ef79fe4a3f
|
3 |
+
size 284427
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51d01f4670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f51d01f80f0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 345544, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675632855027299910, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVLQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLB0tDQxp0AKABfABkAWQCZANnA2QEZAVkBGcDoQNTAJQoTkcAAAAAAAAAAEc/4AAAAAAAAEc/8AAAAAAAAEc/Gjbi6xxDLUc/UGJN0vGp/HSUjAJucJSMBmludGVycJSGlIwBdJSFlIwfPGlweXRob24taW5wdXQtMzgtNWFlZDA3NDk0ZTNkPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgWaBCMDF9fcXVhbG5hbWVfX5RoEIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoCmgAjAlzdWJpbXBvcnSUk5SMBW51bXB5lIWUUpRzdYaUhlIwLg=="}, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVLQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLB0tDQxp0AKABfABkAWQCZANnA2QEZAVkBGcDoQNTAJQoTkcAAAAAAAAAAEc/4AAAAAAAAEc/8AAAAAAAAEc/Gjbi6xxDLUc/UGJN0vGp/HSUjAJucJSMBmludGVycJSGlIwBdJSFlIwfPGlweXRob24taW5wdXQtMzgtNWFlZDA3NDk0ZTNkPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgWaBCMDF9fcXVhbG5hbWVfX5RoEIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoCmgAjAlzdWJpbXBvcnSUk5SMBW51bXB5lIWUUpRzdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjyqVP1TlAb/u5Z4+Kh9zvmQJEj/T7OC+Q6OKP9Eig78Q6qC/1L4hv2prgD5MxTg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC9jNP9tqe78gARA/i3WNvuHPgD+3pE+/M1reP0Mhvb8o8Ka/oAudPXmtmD5uih8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPKpU/VOUBv+7lnj6XQLU9K4VlP2D/Sr4qH3O+ZAkSP9Ps4L5iGD4/HWl8P9Zp6D5Do4o/0SKDvxDqoL/+s5+9txYjv4MxVj/UviG/amuAPkzFOD/d6je/FO6iv4ZTZL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.1653613 -0.5074055 0.31034797]\n [-0.23742357 0.5704558 -0.43930683]\n [ 1.0831074 -1.0245 -1.257143 ]\n [-0.63181806 0.2508195 0.7217605 ]]", "desired_goal": "[[ 1.6081556 -0.98209924 0.56251717]\n [-0.2762874 1.006344 -0.8111071 ]\n [ 1.7371277 -1.4775776 -1.304204 ]\n [ 0.07668233 0.2981985 0.623206 ]]", "observation": "[[ 1.1653613 -0.5074055 0.31034797 0.0885021 0.89656323 -0.1982398 ]\n [-0.23742357 0.5704558 -0.43930683 0.74255955 0.9859789 0.45393246]\n [ 1.0831074 -1.0245 -1.257143 -0.07798003 -0.63706535 0.836693 ]\n [-0.63181806 0.2508195 0.7217605 -0.7184275 -1.2728906 -0.89189947]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASXt0vCcGfjzzC4k+Xap1PeUmezyQjSw+uR/cvSAevz1LO2M8CTWqPHpYNbyfbDs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01492197 0.0155044 0.2676693 ]\n [ 0.05997692 0.0153291 0.16850877]\n [-0.10748238 0.09331918 0.01386912]\n [ 0.02077724 -0.01106846 0.18303154]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.65448, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7wOQ2sRpAcCUhpRSlIwBbJRLMowBdJRHQIjvORq46Op1fZQoaAZoCWgPQwgZ6NoX0MsAwJSGlFKUaBVLMmgWR0CI7cPHT7VKdX2UKGgGaAloD0MIgq59Ab2w/L+UhpRSlGgVSzJoFkdAiOy065oXbnV9lChoBmgJaA9DCFnaqbncoP6/lIaUUpRoFUsyaBZHQIjrpigCfYl1fZQoaAZoCWgPQwjWkLjH0qcDwJSGlFKUaBVLMmgWR0CI8nCpm29ddX2UKGgGaAloD0MI0EVDxqM0AsCUhpRSlGgVSzJoFkdAiPD8FyJbdXV9lChoBmgJaA9DCFa5UPnX0gTAlIaUUpRoFUsyaBZHQIjv7SNOuaF1fZQoaAZoCWgPQwiDonkAizwHwJSGlFKUaBVLMmgWR0CI7t37DVH4dX2UKGgGaAloD0MIAvBPqRKFAsCUhpRSlGgVSzJoFkdAiPWybYsd1nV9lChoBmgJaA9DCFUWhV0UvQTAlIaUUpRoFUsyaBZHQIj0PTodMkB1fZQoaAZoCWgPQwgAyt+9o6YAwJSGlFKUaBVLMmgWR0CI8y4xUNrkdX2UKGgGaAloD0MIyf/k794RB8CUhpRSlGgVSzJoFkdAiPIf7iyY5XV9lChoBmgJaA9DCMH+69y02f6/lIaUUpRoFUsyaBZHQIj5Hl+3H7x1fZQoaAZoCWgPQwjQnWD/dY4BwJSGlFKUaBVLMmgWR0CI96k0rK/3dX2UKGgGaAloD0MIM6mhDcAmBMCUhpRSlGgVSzJoFkdAiPaayrxRVXV9lChoBmgJaA9DCGub4nFRjQXAlIaUUpRoFUsyaBZHQIj1i8e0Xxh1fZQoaAZoCWgPQwh/oNy279ECwJSGlFKUaBVLMmgWR0CI/Jpu/DcedX2UKGgGaAloD0MISkONQpI5AcCUhpRSlGgVSzJoFkdAiPsmM4tHx3V9lChoBmgJaA9DCEn0MorlNgLAlIaUUpRoFUsyaBZHQIj6F6sySFJ1fZQoaAZoCWgPQwhNh07PuxEBwJSGlFKUaBVLMmgWR0CI+Qj2zv7WdX2UKGgGaAloD0MIm3KFd7lIBMCUhpRSlGgVSzJoFkdAiP/86/7BPHV9lChoBmgJaA9DCHwOLEfIgAHAlIaUUpRoFUsyaBZHQIj+h8jRlYl1fZQoaAZoCWgPQwhBSBYwgRsBwJSGlFKUaBVLMmgWR0CI/XivxH5KdX2UKGgGaAloD0MIogkUsYihA8CUhpRSlGgVSzJoFkdAiPxph4MWoHV9lChoBmgJaA9DCGFtjJ3w8gPAlIaUUpRoFUsyaBZHQIkDX3N9ph51fZQoaAZoCWgPQwguyJbl65IBwJSGlFKUaBVLMmgWR0CJAenDR+jNdX2UKGgGaAloD0MIvaseMA85AsCUhpRSlGgVSzJoFkdAiQDahpQDWHV9lChoBmgJaA9DCMlWl1MCwgPAlIaUUpRoFUsyaBZHQIj/y2OQyRB1fZQoaAZoCWgPQwgpPj4hO68DwJSGlFKUaBVLMmgWR0CJBspR4yGjdX2UKGgGaAloD0MICOdTxyqlAcCUhpRSlGgVSzJoFkdAiQVXVbzK93V9lChoBmgJaA9DCGk4ZW6+UQHAlIaUUpRoFUsyaBZHQIkESQmu1Wt1fZQoaAZoCWgPQwgOgo5WteQDwJSGlFKUaBVLMmgWR0CJAzsKsuFpdX2UKGgGaAloD0MIsaTcfY5vAsCUhpRSlGgVSzJoFkdAiQppswco6XV9lChoBmgJaA9DCHPxtz1BogLAlIaUUpRoFUsyaBZHQIkI9GiHqNZ1fZQoaAZoCWgPQwhQbtv3qH8BwJSGlFKUaBVLMmgWR0CJB+VGkN4JdX2UKGgGaAloD0MIM8SxLm6DAsCUhpRSlGgVSzJoFkdAiQbWfbsWwnV9lChoBmgJaA9DCDi/YaJBiv6/lIaUUpRoFUsyaBZHQIkOGdK/VRV1fZQoaAZoCWgPQwj/lCpR9lb+v5SGlFKUaBVLMmgWR0CJDKSgXdj5dX2UKGgGaAloD0MIHH433bLD/7+UhpRSlGgVSzJoFkdAiQuVp0wJxHV9lChoBmgJaA9DCG0a22tBzwLAlIaUUpRoFUsyaBZHQIkKhsbedkJ1fZQoaAZoCWgPQwjWbyamCzEGwJSGlFKUaBVLMmgWR0CJEbaOgg5jdX2UKGgGaAloD0MIBHKJIw+ECMCUhpRSlGgVSzJoFkdAiRBBZha1TnV9lChoBmgJaA9DCDV5ymq6XgHAlIaUUpRoFUsyaBZHQIkPM23rleZ1fZQoaAZoCWgPQwjtRbQdU5cBwJSGlFKUaBVLMmgWR0CJDiSt/4IsdX2UKGgGaAloD0MIYLGGi9xTBMCUhpRSlGgVSzJoFkdAiRUL3bmEG3V9lChoBmgJaA9DCMUB9Pv+zQPAlIaUUpRoFUsyaBZHQIkTlhXr+o91fZQoaAZoCWgPQwiPpnoy/+gCwJSGlFKUaBVLMmgWR0CJEobZvkzXdX2UKGgGaAloD0MIWybD8XzGDMCUhpRSlGgVSzJoFkdAiRF3rMTviXV9lChoBmgJaA9DCLdFmQ0yqQDAlIaUUpRoFUsyaBZHQIkYd9nbqQl1fZQoaAZoCWgPQwg/kSdJ18wBwJSGlFKUaBVLMmgWR0CJFwJY1YQrdX2UKGgGaAloD0MIe737473qBsCUhpRSlGgVSzJoFkdAiRXzTfBN23V9lChoBmgJaA9DCN3PKcjPxv+/lIaUUpRoFUsyaBZHQIkU5EfDDTB1fZQoaAZoCWgPQwjdtu9Rf/38v5SGlFKUaBVLMmgWR0CJG9kbPyCndX2UKGgGaAloD0MIZyyazk4mAcCUhpRSlGgVSzJoFkdAiRpjghr303V9lChoBmgJaA9DCBe5p6s7FgLAlIaUUpRoFUsyaBZHQIkZVMj/uLJ1fZQoaAZoCWgPQwi3fvrPmp8DwJSGlFKUaBVLMmgWR0CJGEYekpI+dX2UKGgGaAloD0MIBrr2BfQCAMCUhpRSlGgVSzJoFkdAiR9kj5bhWHV9lChoBmgJaA9DCHPaU3JO7P+/lIaUUpRoFUsyaBZHQIkd8afjCHh1fZQoaAZoCWgPQwixw5j093IEwJSGlFKUaBVLMmgWR0CJHOVt4zJqdX2UKGgGaAloD0MIrFRQUfWrAsCUhpRSlGgVSzJoFkdAiRvYk/r0KHV9lChoBmgJaA9DCHV4COOncf6/lIaUUpRoFUsyaBZHQIkiviT+vQp1fZQoaAZoCWgPQwgP8Q9behQBwJSGlFKUaBVLMmgWR0CJIUjFAE+xdX2UKGgGaAloD0MIAmN9A5M7A8CUhpRSlGgVSzJoFkdAiSA59uxbCHV9lChoBmgJaA9DCCAqjZjZ5wHAlIaUUpRoFUsyaBZHQIkfKw8nuzB1fZQoaAZoCWgPQwjrxyb5EV8CwJSGlFKUaBVLMmgWR0CJJhreIl+mdX2UKGgGaAloD0MInn5QFym0AsCUhpRSlGgVSzJoFkdAiSSl05lvqHV9lChoBmgJaA9DCKyL22gArwDAlIaUUpRoFUsyaBZHQIkjltygf2d1fZQoaAZoCWgPQwhnnIaowj8BwJSGlFKUaBVLMmgWR0CJIogpz90jdX2UKGgGaAloD0MIYFrUJ7mDAMCUhpRSlGgVSzJoFkdAiSmJQtSQ5nV9lChoBmgJaA9DCO1Ky0i9Z/y/lIaUUpRoFUsyaBZHQIkoE94eLeh1fZQoaAZoCWgPQwhjDoKOVvX9v5SGlFKUaBVLMmgWR0CJJwSeRPoFdX2UKGgGaAloD0MIjZYDPdR2/b+UhpRSlGgVSzJoFkdAiSX2K/EfknV9lChoBmgJaA9DCEYm4NdI0gHAlIaUUpRoFUsyaBZHQIktDDwYtQN1fZQoaAZoCWgPQwiKPbSPFZwAwJSGlFKUaBVLMmgWR0CJK5bTtsvadX2UKGgGaAloD0MIRX9o5smVAMCUhpRSlGgVSzJoFkdAiSqJMYdhiXV9lChoBmgJaA9DCCfYf52bdvq/lIaUUpRoFUsyaBZHQIkpe8VYZEV1fZQoaAZoCWgPQwiyDkdX6Y4AwJSGlFKUaBVLMmgWR0CJMKMtsenydX2UKGgGaAloD0MI3rBtUWZD97+UhpRSlGgVSzJoFkdAiS8trCWNWHV9lChoBmgJaA9DCBYXR+Umqvq/lIaUUpRoFUsyaBZHQIkuHp2U0N11fZQoaAZoCWgPQwhGQlvOpbj/v5SGlFKUaBVLMmgWR0CJLRC79Q40dX2UKGgGaAloD0MIEoWWdf8Y+7+UhpRSlGgVSzJoFkdAiTPoxxkupXV9lChoBmgJaA9DCNOf/UgRWfO/lIaUUpRoFUsyaBZHQIkyc0YTCch1fZQoaAZoCWgPQwgLDcSymQMAwJSGlFKUaBVLMmgWR0CJMWQ5FPSEdX2UKGgGaAloD0MIlj50QX1L/r+UhpRSlGgVSzJoFkdAiTBWbPQfIXV9lChoBmgJaA9DCAXbiCe72f6/lIaUUpRoFUsyaBZHQIk3WMyad+Z1fZQoaAZoCWgPQwiIgEOoUvP6v5SGlFKUaBVLMmgWR0CJNeOby6MBdX2UKGgGaAloD0MICmXh62sd/L+UhpRSlGgVSzJoFkdAiTTUzj3mFXV9lChoBmgJaA9DCJzB3y9mCwDAlIaUUpRoFUsyaBZHQIkzxjjJdSl1fZQoaAZoCWgPQwjxvFRszOv9v5SGlFKUaBVLMmgWR0CJOsOXmeUZdX2UKGgGaAloD0MIX9Gt1/RAAMCUhpRSlGgVSzJoFkdAiTlPRZ2ZA3V9lChoBmgJaA9DCFWgFoOHafu/lIaUUpRoFUsyaBZHQIk4QJVsDW91fZQoaAZoCWgPQwhyameY2lL9v5SGlFKUaBVLMmgWR0CJNzHMEA5rdX2UKGgGaAloD0MIhsq/llcu/b+UhpRSlGgVSzJoFkdAiT4cf/3nIXV9lChoBmgJaA9DCM0Ew7mG2fu/lIaUUpRoFUsyaBZHQIk8ptxdY4h1fZQoaAZoCWgPQwikcD0K16P/v5SGlFKUaBVLMmgWR0CJO5g9/z8QdX2UKGgGaAloD0MI7nvUX68QAsCUhpRSlGgVSzJoFkdAiTqK9PDYRXV9lChoBmgJaA9DCHJO7KF9bPq/lIaUUpRoFUsyaBZHQIlBqL4vexh1fZQoaAZoCWgPQwg1QdR9ADIDwJSGlFKUaBVLMmgWR0CJQDPFefI0dX2UKGgGaAloD0MIfLWjOEc9AcCUhpRSlGgVSzJoFkdAiT8nHNorWnV9lChoBmgJaA9DCJjaUgd5/fq/lIaUUpRoFUsyaBZHQIk+GOXE61d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8638, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.7031881000000002, "std_reward": 0.3691966653436757, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T21:49:16.864323"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44d843336e0993491aaa427bcff6db75f8ee1ec76c5cb2d928784892caa728e1
|
3 |
+
size 3212
|