import onnxruntime as ort | |
from PIL import Image | |
import numpy as np | |
# Load the ONNX model | |
session = ort.InferenceSession('./saved-model/model.onnx') | |
# Get input and output names | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
# Load and preprocess the image | |
img = Image.open('./training_images/shirt/00e745c9-97d9-429d-8c3f-d3db7a2d2991.jpg').resize((128, 128)) | |
img_array = np.array(img).astype(np.float32) / 255.0 # Normalize pixel values to [0, 1] | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
# Run inference | |
outputs = session.run([output_name], {input_name: img_array}) | |
print(f"Inference outputs: {outputs}") | |