import torch from typing import Any, Dict from transformers import AutoModelForCausalLM, AutoTokenizer class EndpointHandler: def __init__(self, path=""): # load model and tokenizer from path self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, quantization_config=bnb_config, device_map="auto", trust_remote_code=True ) # self.model = AutoModelForCausalLM.from_pretrained( # path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True # ) self.device = "cuda" if torch.cuda.is_available() else "cpu" def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(**inputs, **parameters) else: outputs = self.model.generate(**inputs) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]