jsl28 commited on
Commit
bcb3433
1 Parent(s): 314a3ff

Upload Lunar Lander- v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.05 +/- 20.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b61af10d2d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b61af10d360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b61af10d3f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b61af10d480>", "_build": "<function ActorCriticPolicy._build at 0x7b61af10d510>", "forward": "<function ActorCriticPolicy.forward at 0x7b61af10d5a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b61af10d630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b61af10d6c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b61af10d750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b61af10d7e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b61af10d870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b61af10d900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b61b70ff600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701130763424799077, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHpJML7mGHg/s/Pcva1MvL5qqlC++jJBPgAAAAAAAAAA5g0aPkz+uj52dJq9P4VuvuRDnj2G2aI7AAAAAAAAAADN+ZE86bcrP16vij2dXJC+mjBEPZJujbwAAAAAAAAAAK2/Jj4EO5I/0ikGPn8cyb676SE+VJgpvQAAAAAAAAAAgO4+Pen/Zz1ief29Kkk9vsNxRb1cAiy9AAAAAAAAAACzkNa9f+QxP1YdXLwXz8G+NGm+u64vLD0AAAAAAAAAAP3Ywj5d4lk/srETu8vF4L5IHJ4+FTZIvgAAAAAAAAAAM0VKPVJQt7l0MI45k4w8NIOUBrxuZKu4AACAPwAAgD/NhEA89jBvug6RnjMgmIku43AMO6h1pLMAAIA/AACAP80n5TyG86Q+GLc+vYIEZb44d9Y79WfHvAAAAAAAAAAAxjmvvtg0jD9mcTO+R9O7viNnnL7Oe2M+AAAAAAAAAAAakRA94VyYP6JSKz5afca+qXY2PXaNvT0AAAAAAAAAAGaMtbxU4/Y9veKxPdZJGr72/DQ9qtDbugAAAAAAAAAAIw2GvtY1HT+CzLI9NSWEvqrpzL3Vzps9AAAAAAAAAAAaF789rjDVPWCR3b0jJz++ACXFu5bwJrwAAAAAAAAAAI0knD4Dgm8//fo+PtMh2b4qopQ+qOoYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBJDhLoOhGMAWyUTQIBjAF0lEdAodwxDVpblnV9lChoBkdAcG66FuejEmgHTS8BaAhHQKHcN6MR6GB1fZQoaAZHQHMNFRHf/FRoB00ZAWgIR0Ch3HDX4CZGdX2UKGgGR0BxNyioKlYVaAdL/mgIR0Ch3QrQokRjdX2UKGgGR0BwWWDwpe/paAdNHQFoCEdAod0YcghbGHV9lChoBkdAcNQfa6BiC2gHTW8BaAhHQKHeABDG96F1fZQoaAZHQHLO5eiSJTFoB02aAWgIR0Ch3h4M4LkTdX2UKGgGR0BwkbH3lCC0aAdNJwFoCEdAod6xXwLE1nV9lChoBkdAci+uaWom5WgHTSwBaAhHQKHewL4N7Sl1fZQoaAZHQG6zze40/GFoB00EAWgIR0Ch30kDp1RtdX2UKGgGR0Bw/YK2KEWZaAdNmAFoCEdAod97PBzmwXV9lChoBkdAcAXtq59Vm2gHTToBaAhHQKHfmK3NLUV1fZQoaAZHQHKen5zo2XNoB00gAWgIR0Ch38h6Skj5dX2UKGgGR0BwRRHXmNipaAdNCgFoCEdAoeC0vugHvHV9lChoBkdAcDk5ZKWcBmgHTTUBaAhHQKHg0NT987Z1fZQoaAZHQHHWn18LKFJoB01tAWgIR0Ch4NTYukDZdX2UKGgGR0Bw/htLteD4aAdNGQFoCEdAoeE8V8CxNnV9lChoBkdAcd15tm+TNmgHTQQBaAhHQKHhj4rz5Gl1fZQoaAZHQHHlMzAN5MVoB02aAWgIR0Ch4evu5SWJdX2UKGgGR0Bwnfn9vS+haAdNVAFoCEdAoeH0V8CxNnV9lChoBkdAcg2tzS1E3WgHTTMBaAhHQKHiQoXsPat1fZQoaAZHQHJhxyjpLVZoB00FAWgIR0Ch4l//echDdX2UKGgGR0ByDu8Zk079aAdNGgFoCEdAoeNYHu7YkHV9lChoBkdAb3wYNRWLgmgHTQIBaAhHQKHjguoxYaJ1fZQoaAZHQHFX4uTRplBoB00mAWgIR0Ch45mOlwcYdX2UKGgGR0BydUnJDE3saAdNTQFoCEdAoeOg+W4Vh3V9lChoBkdAcof0SAYpD2gHTRABaAhHQKHj4WqLjxV1fZQoaAZHQHCOktRNyo5oB00QAWgIR0Ch5AC5NGmUdX2UKGgGR0BwIkCV8kUsaAdNEwFoCEdAoeQ0QyylenV9lChoBkdAcAlHJ9y93GgHTRoBaAhHQKHlMi2UjcF1fZQoaAZHQG/NAJC0F8poB000AWgIR0Ch5YWRJVbSdX2UKGgGR0BxZ1y+6Ae8aAdNEQFoCEdAoeXIR9PUKHV9lChoBkdAc0OK4hEBsGgHS+VoCEdAoeXrux8lX3V9lChoBkdAcYIadtl7MWgHS/5oCEdAoeY1MEidKHV9lChoBkdAcEk3j+717WgHTSoBaAhHQKHmkbsniNt1fZQoaAZHQHItoInjQzFoB01RAWgIR0Ch5zDuKGcndX2UKGgGR0ByWhR77bcoaAdNfQFoCEdAoedGVC5VfnV9lChoBkdAcpBF4s3AEmgHTRIBaAhHQKHoZDrqt5l1fZQoaAZHQG6n+T3Zf2NoB001AWgIR0Ch6LdZzPrwdX2UKGgGR0BykAIRh+fAaAdNOQFoCEdAoejCwwCbMHV9lChoBkdAcpqP2f02+GgHTSsBaAhHQKHo/t65Xlt1fZQoaAZHQG2GvX9R77doB00mAWgIR0Ch6See4Cp4dX2UKGgGR0BwPapkwvg4aAdNVwFoCEdAoekvkkrwv3V9lChoBkdAba+r/bTMJWgHTWgBaAhHQKHpS4uscQ11fZQoaAZHQG0Vnd43WFxoB00RAWgIR0Ch9PH5aePJdX2UKGgGR0BxSr8MuvlmaAdNDwFoCEdAofUKw+t8u3V9lChoBkdAcu1XC0ngHmgHTUIBaAhHQKH1LPGACnx1fZQoaAZHQHCM9h7Vrh1oB00fAWgIR0Ch9ZOL74zrdX2UKGgGR0BRVzhgmZ3LaAdL6GgIR0Ch9aZCv5gxdX2UKGgGR0BwX3ozN2TxaAdNVwFoCEdAofXSc0+C9XV9lChoBkdAbN2bExZdOmgHTTMBaAhHQKH2LpXZGrl1fZQoaAZHQHEK2+XZ5A1oB00WAWgIR0Ch9lupbUw0dX2UKGgGR0BzaP/6wdKeaAdL3mgIR0Ch9m8vduYQdX2UKGgGR0AZH+YMOPNnaAdL92gIR0Ch92zOX3QEdX2UKGgGR0BwAiPxQSBcaAdL+GgIR0Ch95VTR6WxdX2UKGgGR0BxthhE0BOpaAdNIwFoCEdAofe6MYMvy3V9lChoBkdAbMgMefZmI2gHTRwBaAhHQKH32wHJLdx1fZQoaAZHQHDRIN7SiM5oB01EAWgIR0Ch+MenQ6ZIdX2UKGgGR0ByLrFMqSX/aAdNEQFoCEdAofmPa6BiC3V9lChoBkdAbjkcvugHvGgHTZgBaAhHQKH55hVlwtJ1fZQoaAZHQHCVSe7L+xZoB00uAWgIR0Ch+fs495hSdX2UKGgGR0ByCoJBw++uaAdNOQFoCEdAofoTFyaNM3V9lChoBkdAcU77JW/8EWgHTSQBaAhHQKH6X4fwI+p1fZQoaAZHQHLf+WnjyWloB00CAWgIR0Ch+rhkRSP2dX2UKGgGR0BwqGjCYTkAaAdNEQFoCEdAofrBwOvt+nV9lChoBkdAcZyo+fRNRGgHTQoBaAhHQKH6531zySV1fZQoaAZHQG4kWxhUipxoB004AWgIR0Ch+vAsK9f1dX2UKGgGR0BwSR6MR6F/aAdNWwFoCEdAofs81jy4F3V9lChoBkdAZA/w3HaN/GgHTegDaAhHQKH7fqHoHLR1fZQoaAZHQHDZaYVqN6xoB0v3aAhHQKH7o//vOQh1fZQoaAZHQHIHKm8/UvxoB00FAWgIR0Ch/AvS+g14dX2UKGgGR0Bymv4QBgeBaAdNMwFoCEdAofyXokiUxHV9lChoBkdAcqEM2WIGhWgHTV4BaAhHQKH88UTL4et1fZQoaAZHQG7gs7lq8DloB00gAWgIR0Ch/TOcMEzPdX2UKGgGR0BxdoGmk30gaAdNCgFoCEdAof3SqABkqnV9lChoBkdAcutfWtlqamgHTSwBaAhHQKH+HlA/s3R1fZQoaAZHQHBId+TeO4poB00mAWgIR0Ch/l9pyp71dX2UKGgGR0ByMKso2GZeaAdNNgFoCEdAof8bWy1NQHV9lChoBkdAclBGpda+vmgHTScBaAhHQKH/NrSmZVp1fZQoaAZHQHIEJLuhK15oB00qAWgIR0Ch/0/gR9PUdX2UKGgGR0Bvoo2AG0NSaAdNIgFoCEdAof9cTxoZh3V9lChoBkdAcy7b+Lm6oWgHTVcBaAhHQKH/Y5YHPeJ1fZQoaAZHQG/u54GD+R5oB009AWgIR0Ch/9BYV6/qdX2UKGgGR0BweCrksBhhaAdNHwFoCEdAogA6JoCdSXV9lChoBkdAcB+KraM72mgHTTUBaAhHQKIAYIWxhUl1fZQoaAZHQG0EjiGWUr1oB01TAWgIR0CiAINahYeUdX2UKGgGR0BySd61LJ0XaAdNKwFoCEdAogFzb349HXV9lChoBkdAcs21qnFYMmgHTWUBaAhHQKIBysaKk2x1fZQoaAZHQG5uHVwxWT5oB00rAWgIR0CiAiBNVR1pdX2UKGgGR0Byw+WWyC4CaAdNQgFoCEdAogI6wbEP2HV9lChoBkdAcR4AJLM9sGgHTTgBaAhHQKIDAr8zhxZ1fZQoaAZHQHFgwlByCFtoB01AAWgIR0CiA3wYk3S8dX2UKGgGR0BQE0tAcDKYaAdL5WgIR0CiA5rJr+HadX2UKGgGR0Bv5RA2Q4jsaAdNOAFoCEdAogOkGxD9fnV9lChoBkdAcXnYe1a4c2gHTQ4BaAhHQKID0Q3gk1N1fZQoaAZHQHIpW/zreIloB00dAWgIR0CiBBtelbeNdX2UKGgGR0BxnDz7MxGlaAdNKAFoCEdAogQhu/Dcd3V9lChoBkdAcGsY1pCa7WgHTTEBaAhHQKIELUSZjQR1fZQoaAZHQHDpAo1DSgJoB00sAWgIR0CiBENaQmu1dX2UKGgGR0BxYn13+uNhaAdNAgFoCEdAogSv+l0o0HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f53a825cb1136b75878cf69b52d9b92937da50ae55ffd313d0c164fb489889ef
3
+ size 148046
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b61af10d2d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b61af10d360>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b61af10d3f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b61af10d480>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b61af10d510>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b61af10d5a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b61af10d630>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b61af10d6c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b61af10d750>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b61af10d7e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b61af10d870>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b61af10d900>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b61b70ff600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701130763424799077,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHpJML7mGHg/s/Pcva1MvL5qqlC++jJBPgAAAAAAAAAA5g0aPkz+uj52dJq9P4VuvuRDnj2G2aI7AAAAAAAAAADN+ZE86bcrP16vij2dXJC+mjBEPZJujbwAAAAAAAAAAK2/Jj4EO5I/0ikGPn8cyb676SE+VJgpvQAAAAAAAAAAgO4+Pen/Zz1ief29Kkk9vsNxRb1cAiy9AAAAAAAAAACzkNa9f+QxP1YdXLwXz8G+NGm+u64vLD0AAAAAAAAAAP3Ywj5d4lk/srETu8vF4L5IHJ4+FTZIvgAAAAAAAAAAM0VKPVJQt7l0MI45k4w8NIOUBrxuZKu4AACAPwAAgD/NhEA89jBvug6RnjMgmIku43AMO6h1pLMAAIA/AACAP80n5TyG86Q+GLc+vYIEZb44d9Y79WfHvAAAAAAAAAAAxjmvvtg0jD9mcTO+R9O7viNnnL7Oe2M+AAAAAAAAAAAakRA94VyYP6JSKz5afca+qXY2PXaNvT0AAAAAAAAAAGaMtbxU4/Y9veKxPdZJGr72/DQ9qtDbugAAAAAAAAAAIw2GvtY1HT+CzLI9NSWEvqrpzL3Vzps9AAAAAAAAAAAaF789rjDVPWCR3b0jJz++ACXFu5bwJrwAAAAAAAAAAI0knD4Dgm8//fo+PtMh2b4qopQ+qOoYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBJDhLoOhGMAWyUTQIBjAF0lEdAodwxDVpblnV9lChoBkdAcG66FuejEmgHTS8BaAhHQKHcN6MR6GB1fZQoaAZHQHMNFRHf/FRoB00ZAWgIR0Ch3HDX4CZGdX2UKGgGR0BxNyioKlYVaAdL/mgIR0Ch3QrQokRjdX2UKGgGR0BwWWDwpe/paAdNHQFoCEdAod0YcghbGHV9lChoBkdAcNQfa6BiC2gHTW8BaAhHQKHeABDG96F1fZQoaAZHQHLO5eiSJTFoB02aAWgIR0Ch3h4M4LkTdX2UKGgGR0BwkbH3lCC0aAdNJwFoCEdAod6xXwLE1nV9lChoBkdAci+uaWom5WgHTSwBaAhHQKHewL4N7Sl1fZQoaAZHQG6zze40/GFoB00EAWgIR0Ch30kDp1RtdX2UKGgGR0Bw/YK2KEWZaAdNmAFoCEdAod97PBzmwXV9lChoBkdAcAXtq59Vm2gHTToBaAhHQKHfmK3NLUV1fZQoaAZHQHKen5zo2XNoB00gAWgIR0Ch38h6Skj5dX2UKGgGR0BwRRHXmNipaAdNCgFoCEdAoeC0vugHvHV9lChoBkdAcDk5ZKWcBmgHTTUBaAhHQKHg0NT987Z1fZQoaAZHQHHWn18LKFJoB01tAWgIR0Ch4NTYukDZdX2UKGgGR0Bw/htLteD4aAdNGQFoCEdAoeE8V8CxNnV9lChoBkdAcd15tm+TNmgHTQQBaAhHQKHhj4rz5Gl1fZQoaAZHQHHlMzAN5MVoB02aAWgIR0Ch4evu5SWJdX2UKGgGR0Bwnfn9vS+haAdNVAFoCEdAoeH0V8CxNnV9lChoBkdAcg2tzS1E3WgHTTMBaAhHQKHiQoXsPat1fZQoaAZHQHJhxyjpLVZoB00FAWgIR0Ch4l//echDdX2UKGgGR0ByDu8Zk079aAdNGgFoCEdAoeNYHu7YkHV9lChoBkdAb3wYNRWLgmgHTQIBaAhHQKHjguoxYaJ1fZQoaAZHQHFX4uTRplBoB00mAWgIR0Ch45mOlwcYdX2UKGgGR0BydUnJDE3saAdNTQFoCEdAoeOg+W4Vh3V9lChoBkdAcof0SAYpD2gHTRABaAhHQKHj4WqLjxV1fZQoaAZHQHCOktRNyo5oB00QAWgIR0Ch5AC5NGmUdX2UKGgGR0BwIkCV8kUsaAdNEwFoCEdAoeQ0QyylenV9lChoBkdAcAlHJ9y93GgHTRoBaAhHQKHlMi2UjcF1fZQoaAZHQG/NAJC0F8poB000AWgIR0Ch5YWRJVbSdX2UKGgGR0BxZ1y+6Ae8aAdNEQFoCEdAoeXIR9PUKHV9lChoBkdAc0OK4hEBsGgHS+VoCEdAoeXrux8lX3V9lChoBkdAcYIadtl7MWgHS/5oCEdAoeY1MEidKHV9lChoBkdAcEk3j+717WgHTSoBaAhHQKHmkbsniNt1fZQoaAZHQHItoInjQzFoB01RAWgIR0Ch5zDuKGcndX2UKGgGR0ByWhR77bcoaAdNfQFoCEdAoedGVC5VfnV9lChoBkdAcpBF4s3AEmgHTRIBaAhHQKHoZDrqt5l1fZQoaAZHQG6n+T3Zf2NoB001AWgIR0Ch6LdZzPrwdX2UKGgGR0BykAIRh+fAaAdNOQFoCEdAoejCwwCbMHV9lChoBkdAcpqP2f02+GgHTSsBaAhHQKHo/t65Xlt1fZQoaAZHQG2GvX9R77doB00mAWgIR0Ch6See4Cp4dX2UKGgGR0BwPapkwvg4aAdNVwFoCEdAoekvkkrwv3V9lChoBkdAba+r/bTMJWgHTWgBaAhHQKHpS4uscQ11fZQoaAZHQG0Vnd43WFxoB00RAWgIR0Ch9PH5aePJdX2UKGgGR0BxSr8MuvlmaAdNDwFoCEdAofUKw+t8u3V9lChoBkdAcu1XC0ngHmgHTUIBaAhHQKH1LPGACnx1fZQoaAZHQHCM9h7Vrh1oB00fAWgIR0Ch9ZOL74zrdX2UKGgGR0BRVzhgmZ3LaAdL6GgIR0Ch9aZCv5gxdX2UKGgGR0BwX3ozN2TxaAdNVwFoCEdAofXSc0+C9XV9lChoBkdAbN2bExZdOmgHTTMBaAhHQKH2LpXZGrl1fZQoaAZHQHEK2+XZ5A1oB00WAWgIR0Ch9lupbUw0dX2UKGgGR0BzaP/6wdKeaAdL3mgIR0Ch9m8vduYQdX2UKGgGR0AZH+YMOPNnaAdL92gIR0Ch92zOX3QEdX2UKGgGR0BwAiPxQSBcaAdL+GgIR0Ch95VTR6WxdX2UKGgGR0BxthhE0BOpaAdNIwFoCEdAofe6MYMvy3V9lChoBkdAbMgMefZmI2gHTRwBaAhHQKH32wHJLdx1fZQoaAZHQHDRIN7SiM5oB01EAWgIR0Ch+MenQ6ZIdX2UKGgGR0ByLrFMqSX/aAdNEQFoCEdAofmPa6BiC3V9lChoBkdAbjkcvugHvGgHTZgBaAhHQKH55hVlwtJ1fZQoaAZHQHCVSe7L+xZoB00uAWgIR0Ch+fs495hSdX2UKGgGR0ByCoJBw++uaAdNOQFoCEdAofoTFyaNM3V9lChoBkdAcU77JW/8EWgHTSQBaAhHQKH6X4fwI+p1fZQoaAZHQHLf+WnjyWloB00CAWgIR0Ch+rhkRSP2dX2UKGgGR0BwqGjCYTkAaAdNEQFoCEdAofrBwOvt+nV9lChoBkdAcZyo+fRNRGgHTQoBaAhHQKH6531zySV1fZQoaAZHQG4kWxhUipxoB004AWgIR0Ch+vAsK9f1dX2UKGgGR0BwSR6MR6F/aAdNWwFoCEdAofs81jy4F3V9lChoBkdAZA/w3HaN/GgHTegDaAhHQKH7fqHoHLR1fZQoaAZHQHDZaYVqN6xoB0v3aAhHQKH7o//vOQh1fZQoaAZHQHIHKm8/UvxoB00FAWgIR0Ch/AvS+g14dX2UKGgGR0Bymv4QBgeBaAdNMwFoCEdAofyXokiUxHV9lChoBkdAcqEM2WIGhWgHTV4BaAhHQKH88UTL4et1fZQoaAZHQG7gs7lq8DloB00gAWgIR0Ch/TOcMEzPdX2UKGgGR0BxdoGmk30gaAdNCgFoCEdAof3SqABkqnV9lChoBkdAcutfWtlqamgHTSwBaAhHQKH+HlA/s3R1fZQoaAZHQHBId+TeO4poB00mAWgIR0Ch/l9pyp71dX2UKGgGR0ByMKso2GZeaAdNNgFoCEdAof8bWy1NQHV9lChoBkdAclBGpda+vmgHTScBaAhHQKH/NrSmZVp1fZQoaAZHQHIEJLuhK15oB00qAWgIR0Ch/0/gR9PUdX2UKGgGR0Bvoo2AG0NSaAdNIgFoCEdAof9cTxoZh3V9lChoBkdAcy7b+Lm6oWgHTVcBaAhHQKH/Y5YHPeJ1fZQoaAZHQG/u54GD+R5oB009AWgIR0Ch/9BYV6/qdX2UKGgGR0BweCrksBhhaAdNHwFoCEdAogA6JoCdSXV9lChoBkdAcB+KraM72mgHTTUBaAhHQKIAYIWxhUl1fZQoaAZHQG0EjiGWUr1oB01TAWgIR0CiAINahYeUdX2UKGgGR0BySd61LJ0XaAdNKwFoCEdAogFzb349HXV9lChoBkdAcs21qnFYMmgHTWUBaAhHQKIBysaKk2x1fZQoaAZHQG5uHVwxWT5oB00rAWgIR0CiAiBNVR1pdX2UKGgGR0Byw+WWyC4CaAdNQgFoCEdAogI6wbEP2HV9lChoBkdAcR4AJLM9sGgHTTgBaAhHQKIDAr8zhxZ1fZQoaAZHQHFgwlByCFtoB01AAWgIR0CiA3wYk3S8dX2UKGgGR0BQE0tAcDKYaAdL5WgIR0CiA5rJr+HadX2UKGgGR0Bv5RA2Q4jsaAdNOAFoCEdAogOkGxD9fnV9lChoBkdAcXnYe1a4c2gHTQ4BaAhHQKID0Q3gk1N1fZQoaAZHQHIpW/zreIloB00dAWgIR0CiBBtelbeNdX2UKGgGR0BxnDz7MxGlaAdNKAFoCEdAogQhu/Dcd3V9lChoBkdAcGsY1pCa7WgHTTEBaAhHQKIELUSZjQR1fZQoaAZHQHDpAo1DSgJoB00sAWgIR0CiBENaQmu1dX2UKGgGR0BxYn13+uNhaAdNAgFoCEdAogSv+l0o0HVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 300,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd9aabdf04f4e9a610eb85bf66c486efa5687d3cd3635125f5715f8f62816a5
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69b0541752154a41eaa0b2ccde49bf5f037d5cd5954d7a1c8cd656ba296b8f74
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.0524558, "std_reward": 20.2415473057689, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-28T01:02:47.652789"}