jsnfly
commited on
Commit
·
004e907
1
Parent(s):
3cb1ad3
add training notebooks
Browse files- README.md +10 -1
- training/data_loading.py +41 -0
- training/decoder_only_training.ipynb +371 -0
- training/end2end_training.ipynb +269 -0
- training/model.py +137 -0
- training/wer.py +12 -0
README.md
CHANGED
@@ -37,7 +37,16 @@ the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2).
|
|
37 |
|
38 |
It was trained using a two step process:
|
39 |
* fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell
|
|
|
|
|
|
|
|
|
40 |
* fine-tuning the model end-to-end
|
|
|
|
|
41 |
|
42 |
There is also one trick, which seemed to improve performance significantly: adding position embeddings to the
|
43 |
-
encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`).
|
|
|
|
|
|
|
|
37 |
|
38 |
It was trained using a two step process:
|
39 |
* fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell
|
40 |
+
* relatively fast training
|
41 |
+
* also works on small GPU (eg. 8 GB)
|
42 |
+
* but may take a lot of disk space
|
43 |
+
* should already yield decent results
|
44 |
* fine-tuning the model end-to-end
|
45 |
+
* much slower
|
46 |
+
* needs a bigger GPU
|
47 |
|
48 |
There is also one trick, which seemed to improve performance significantly: adding position embeddings to the
|
49 |
+
encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`).
|
50 |
+
|
51 |
+
The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning
|
52 |
+
rate schedule.
|
training/data_loading.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
|
6 |
+
class S2TDataset(Dataset):
|
7 |
+
def __init__(self, data_path):
|
8 |
+
self.path = Path(data_path)
|
9 |
+
self.files = list(self.path.iterdir())
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return len(self.files)
|
13 |
+
|
14 |
+
def __getitem__(self, idx):
|
15 |
+
file_path = self.files[idx]
|
16 |
+
eg = torch.load(file_path)
|
17 |
+
eg['file_path'] = file_path
|
18 |
+
return eg
|
19 |
+
|
20 |
+
|
21 |
+
# TODO: Somehow masks do not work yet (bad performace), but Training also works w/o using the mask.
|
22 |
+
def make_collate_fn(tokenizer):
|
23 |
+
def collate_fn(examples):
|
24 |
+
wav2vec_feats = [eg['wave2vec_features'] for eg in examples]
|
25 |
+
max_len = len(max(wav2vec_feats, key=len))
|
26 |
+
padded_feats, attention_masks = [], []
|
27 |
+
for feats in wav2vec_feats:
|
28 |
+
num_pads = max_len - len(feats)
|
29 |
+
padded_feats.append(torch.cat([feats, torch.zeros((num_pads, feats.shape[-1]), device=feats.device)]))
|
30 |
+
if num_pads > 0:
|
31 |
+
mask = torch.zeros((max_len,), device=feats.device).long()
|
32 |
+
mask[:-num_pads] = 1
|
33 |
+
else:
|
34 |
+
mask = torch.ones((max_len,), device=feats.device).long()
|
35 |
+
attention_masks.append(mask)
|
36 |
+
|
37 |
+
encoder_hidden_states = torch.stack(padded_feats, dim=0)
|
38 |
+
encoder_attention_masks = torch.stack(attention_masks, dim=0).bool()
|
39 |
+
input_ids = tokenizer([eg['sentence'] for eg in examples], return_tensors='pt', padding=True).input_ids
|
40 |
+
return encoder_hidden_states, encoder_attention_masks, input_ids
|
41 |
+
return collate_fn
|
training/decoder_only_training.ipynb
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "521e21ab",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# This notebook is currently designed for a GPU using fp16. Hyperparameters however are barely tuned."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "1732f970",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import random\n",
|
21 |
+
"import torch\n",
|
22 |
+
"from pathlib import Path"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"id": "f55f4047",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"EXPERIMENT_NAME = '00'\n",
|
33 |
+
"DATA_PATH = Path('../data/common_voice/de')\n",
|
34 |
+
"\n",
|
35 |
+
"model_dir = Path('decoder_only/de') / EXPERIMENT_NAME\n",
|
36 |
+
"log_dir = model_dir / 'logs'\n",
|
37 |
+
"log_dir.mkdir(exist_ok=True, parents=True)\n",
|
38 |
+
"\n",
|
39 |
+
"config = {\n",
|
40 |
+
" 'use_train_frac': 1.0, # When using all samples the wav2vec-outputs take up ~275GB disk space!!(~360,000 samples)\n",
|
41 |
+
" 'use_val_frac': 0.2,\n",
|
42 |
+
" 'encoder_id': 'jonatasgrosman/wav2vec2-large-xlsr-53-german',\n",
|
43 |
+
" 'decoder_id': 'dbmdz/german-gpt2',\n",
|
44 |
+
" 'decoder_pad_token': '_',\n",
|
45 |
+
" 'decoder_bos_token': '~',\n",
|
46 |
+
" 'num_beams': 1,\n",
|
47 |
+
" 'batch_size': 16,\n",
|
48 |
+
" 'weight_decay': 0.,\n",
|
49 |
+
" 'accumulate_grad': 2,\n",
|
50 |
+
" 'max_epochs': 10,\n",
|
51 |
+
" 'max_len': 36 # len(max(tokenizer(common_voice['validation']['sentence'] + common_voice['test']['sentence']).input_ids, key=len))\n",
|
52 |
+
"}"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "markdown",
|
57 |
+
"id": "eb3de6a4",
|
58 |
+
"metadata": {},
|
59 |
+
"source": [
|
60 |
+
"# Feature Extraction"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"id": "b176328e",
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"from huggingface_hub import notebook_login\n",
|
71 |
+
"from datasets import load_dataset\n",
|
72 |
+
"from datasets.features import Audio\n",
|
73 |
+
"from transformers import Wav2Vec2Model, Wav2Vec2FeatureExtractor"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"id": "54e70696",
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"notebook_login()"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"id": "f0d22752",
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"def extract_features_to_files(model, feature_extractor, dataset_split, batch_size, output_path):\n",
|
94 |
+
" output_path = Path(output_path)\n",
|
95 |
+
" output_path.mkdir(parents=True, exist_ok=True)\n",
|
96 |
+
"\n",
|
97 |
+
" model.eval().cuda()\n",
|
98 |
+
" for i in range(0, len(dataset_split), batch_size):\n",
|
99 |
+
" batch = dataset_split[i:i+batch_size]\n",
|
100 |
+
" sent_batch = batch['sentence']\n",
|
101 |
+
" audio_batch = batch['audio']\n",
|
102 |
+
" for i, eg in enumerate(audio_batch):\n",
|
103 |
+
" # Remove the longest examples, should be only three and these may lead to OOM- or Index-Errors.\n",
|
104 |
+
" if len(eg['array']) > 300_000:\n",
|
105 |
+
" print('Too Long.')\n",
|
106 |
+
" audio_batch.pop(i)\n",
|
107 |
+
" sent_batch.pop(i)\n",
|
108 |
+
" features = feature_extractor([eg['array'] for eg in audio_batch],\n",
|
109 |
+
" sampling_rate=16_000,\n",
|
110 |
+
" return_tensors='pt',\n",
|
111 |
+
" padding='longest')\n",
|
112 |
+
"\n",
|
113 |
+
" with torch.no_grad():\n",
|
114 |
+
" out = model(features.input_values.cuda(), attention_mask=features.attention_mask.cuda())\n",
|
115 |
+
"\n",
|
116 |
+
" assert len(sent_batch) == len(audio_batch) == len(out.last_hidden_state)\n",
|
117 |
+
" for sent, audio, hs in zip(sent_batch, audio_batch, out.last_hidden_state.bfloat16().cpu()):\n",
|
118 |
+
" file_name = audio['path'].split('/')[-1]\n",
|
119 |
+
" torch.save(\n",
|
120 |
+
" # .clone() is necessary: https://github.com/pytorch/pytorch/issues/1995\n",
|
121 |
+
" {'sentence': sent, 'wave2vec_features': hs.clone()},\n",
|
122 |
+
" output_path / file_name\n",
|
123 |
+
" )"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"id": "06324b6f",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"if not DATA_PATH.exists():\n",
|
134 |
+
" \n",
|
135 |
+
" common_voice = load_dataset('mozilla-foundation/common_voice_7_0', 'de', use_auth_token=True)\n",
|
136 |
+
" \n",
|
137 |
+
" random.seed(419)\n",
|
138 |
+
" train_inds = list(range(len(common_voice['train'])))\n",
|
139 |
+
" random.shuffle(train_inds)\n",
|
140 |
+
" val_inds = list(range(len(common_voice['validation'])))\n",
|
141 |
+
" random.shuffle(val_inds)\n",
|
142 |
+
" \n",
|
143 |
+
" train_inds = train_inds[:int(config['use_train_frac'] * len(train_inds))]\n",
|
144 |
+
" train = common_voice['train'].select(train_inds)\n",
|
145 |
+
" train = train.cast_column('audio', Audio(sampling_rate=16_000))\n",
|
146 |
+
" \n",
|
147 |
+
" val_inds = val_inds[:int(config['use_val_frac'] * len(val_inds))]\n",
|
148 |
+
" val = common_voice['validation'].select(val_inds)\n",
|
149 |
+
" val = val.cast_column('audio', Audio(sampling_rate=16_000))\n",
|
150 |
+
" \n",
|
151 |
+
" # Load Model for feature extraction.\n",
|
152 |
+
" wave2vec_extractor = Wav2Vec2FeatureExtractor.from_pretrained(config['encoder_id'])\n",
|
153 |
+
" wave2vec = Wav2Vec2Model.from_pretrained(config['encoder_id'])\n",
|
154 |
+
" wave2vec.eval().cuda()\n",
|
155 |
+
" \n",
|
156 |
+
" extract_features_to_files(wave2vec, wave2vec_extractor, train, batch_size=8, output_path=DATA_PATH / 'train')\n",
|
157 |
+
" extract_features_to_files(wave2vec, wave2vec_extractor, val, batch_size=8, output_path=DATA_PATH / 'val')\n",
|
158 |
+
" \n",
|
159 |
+
" wave2vec.cpu()\n",
|
160 |
+
" torch.cuda.empty_cache()"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "markdown",
|
165 |
+
"id": "b2ae2a47",
|
166 |
+
"metadata": {},
|
167 |
+
"source": [
|
168 |
+
"# Training"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": null,
|
174 |
+
"id": "188ef54f",
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"import json\n",
|
179 |
+
"from accelerate import Accelerator\n",
|
180 |
+
"from torch.utils.data import DataLoader\n",
|
181 |
+
"from torch.optim import AdamW\n",
|
182 |
+
"from torch.utils.tensorboard import SummaryWriter\n",
|
183 |
+
"from transformers import AutoTokenizer, Wav2Vec2FeatureExtractor\n",
|
184 |
+
"from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2BaseModelOutput\n",
|
185 |
+
"from data_loading import make_collate_fn, S2TDataset\n",
|
186 |
+
"from wer import calculate_wer # Not what's used in eval.py.\n",
|
187 |
+
"from model import Wav2VecGPT2Model"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"id": "41518c81",
|
194 |
+
"metadata": {
|
195 |
+
"scrolled": false
|
196 |
+
},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"tokenizer = AutoTokenizer.from_pretrained(config['decoder_id'])\n",
|
200 |
+
"tokenizer.add_special_tokens({'pad_token': config['decoder_pad_token'], 'bos_token': config['decoder_bos_token']})\n",
|
201 |
+
"\n",
|
202 |
+
"model = Wav2VecGPT2Model.from_encoder_decoder_pretrained(\n",
|
203 |
+
" config['encoder_id'], config['decoder_id'], max_length=config['max_len'], num_beams=config['num_beams']\n",
|
204 |
+
")\n",
|
205 |
+
"\n",
|
206 |
+
"model.config.decoder_start_token_id = tokenizer.bos_token_id\n",
|
207 |
+
"model.config.pad_token_id = tokenizer.pad_token_id"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "a95ec028",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"collate_fn = make_collate_fn(tokenizer)\n",
|
218 |
+
"\n",
|
219 |
+
"train_ds = S2TDataset(DATA_PATH / 'train')\n",
|
220 |
+
"train_dl = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True, collate_fn=collate_fn, num_workers=4)\n",
|
221 |
+
"\n",
|
222 |
+
"val_ds = S2TDataset(DATA_PATH / 'val')\n",
|
223 |
+
"val_dl = DataLoader(val_ds, batch_size=config['batch_size'], shuffle=False, collate_fn=collate_fn, num_workers=4)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"id": "0aaeeced",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"high_lr_modules = ['cross_attn', 'crossattention', 'enc_to_dec_proj', 'encoder_outputs_pos_emb']\n",
|
234 |
+
"high_lr_params = [p for n, p in model.named_parameters() if any(m in n for m in high_lr_modules)]\n",
|
235 |
+
"\n",
|
236 |
+
"optimizer_grouped_parameters = [\n",
|
237 |
+
" {\n",
|
238 |
+
" \"params\": high_lr_params,\n",
|
239 |
+
" \"lr\": 5e-4,\n",
|
240 |
+
" },\n",
|
241 |
+
" {\n",
|
242 |
+
" \"params\": [p for n, p in model.decoder.named_parameters() if not any(m in n for m in high_lr_modules)],\n",
|
243 |
+
" \"lr\": 1e-6,\n",
|
244 |
+
" },\n",
|
245 |
+
"]\n",
|
246 |
+
"optimizer = AdamW(optimizer_grouped_parameters, weight_decay=0.)"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": null,
|
252 |
+
"id": "cf98d090",
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"accelerator = Accelerator(fp16=True)\n",
|
257 |
+
"print(f'Using {accelerator.device}.')"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": null,
|
263 |
+
"id": "da9e928e",
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"model, optimizer, train_dl, val_dl = accelerator.prepare(model, optimizer, train_dl, val_dl)"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"id": "f191f256",
|
274 |
+
"metadata": {
|
275 |
+
"scrolled": false
|
276 |
+
},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"with open(log_dir / 'config.json', 'w') as config_file:\n",
|
280 |
+
" json.dump(config, config_file, indent=4)\n",
|
281 |
+
" \n",
|
282 |
+
"writer = SummaryWriter(log_dir)\n",
|
283 |
+
"val_golds = [eg['sentence'] for eg in val_ds]\n",
|
284 |
+
"best_val_wer = 10.\n",
|
285 |
+
"global_train_step = 0\n",
|
286 |
+
"\n",
|
287 |
+
"for epoch in range(config['max_epochs']):\n",
|
288 |
+
" \n",
|
289 |
+
" model.train()\n",
|
290 |
+
" model.encoder.cpu() # Model gets moved to gpu for evaluation (see below).\n",
|
291 |
+
" torch.cuda.empty_cache()\n",
|
292 |
+
" for batch_step, (encoder_hidden_states, att_mask, input_ids) in enumerate(train_dl):\n",
|
293 |
+
" if encoder_hidden_states.shape[1] > 1024:\n",
|
294 |
+
" # That's too long for the position embeddings. \n",
|
295 |
+
" # TODO: handle this in model code.\n",
|
296 |
+
" print(f'SKIPPED: {encoder_hidden_states.shape}')\n",
|
297 |
+
" continue\n",
|
298 |
+
" global_train_step += 1\n",
|
299 |
+
" \n",
|
300 |
+
" out = model(labels=input_ids, encoder_outputs=Wav2Vec2BaseModelOutput(encoder_hidden_states))\n",
|
301 |
+
" accelerator.backward(out.loss)\n",
|
302 |
+
" writer.add_scalar('train_loss', out.loss.item(), global_train_step)\n",
|
303 |
+
" \n",
|
304 |
+
" if (batch_step + 1) % config['accumulate_grad'] == 0:\n",
|
305 |
+
" optimizer.step()\n",
|
306 |
+
" optimizer.zero_grad()\n",
|
307 |
+
" \n",
|
308 |
+
" if batch_step % 300 == 0:\n",
|
309 |
+
" print(out.loss.item())\n",
|
310 |
+
" \n",
|
311 |
+
" model.eval()\n",
|
312 |
+
" model.cuda() # Necessary for input_ids to be initialized on the correct device.\n",
|
313 |
+
" val_preds = []\n",
|
314 |
+
" for encoder_hidden_states, att_mask, _ in val_dl:\n",
|
315 |
+
" with torch.no_grad():\n",
|
316 |
+
" generated = model.generate(\n",
|
317 |
+
" encoder_outputs=Wav2Vec2BaseModelOutput(last_hidden_state=encoder_hidden_states)\n",
|
318 |
+
" )\n",
|
319 |
+
" val_preds += tokenizer.batch_decode(generated)\n",
|
320 |
+
" val_preds = [pred.lstrip('~').rstrip('_') for pred in val_preds]\n",
|
321 |
+
" wer = calculate_wer(val_preds, val_golds)\n",
|
322 |
+
" writer.add_scalar('val_wer', wer, epoch)\n",
|
323 |
+
" print('WER: ', wer)\n",
|
324 |
+
" \n",
|
325 |
+
" if wer < best_val_wer:\n",
|
326 |
+
" torch.save(model.state_dict(), model_dir / 'model.pt')\n",
|
327 |
+
" print('Saved Model.')\n",
|
328 |
+
" best_val_wer = wer"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": null,
|
334 |
+
"id": "d84a7e5c",
|
335 |
+
"metadata": {},
|
336 |
+
"outputs": [],
|
337 |
+
"source": [
|
338 |
+
"# # Load saved pytorch model and save with all necessary model files.\n",
|
339 |
+
"# output_path = model_dir /'full_model'\n",
|
340 |
+
"# \n",
|
341 |
+
"# model.load_state_dict(torch.load(model_dir / 'model.pt'))\n",
|
342 |
+
"# \n",
|
343 |
+
"# tokenizer.save_pretrained(output_path)\n",
|
344 |
+
"# wave2vec_extractor = Wav2Vec2FeatureExtractor.from_pretrained(config['encoder_id'])\n",
|
345 |
+
"# wave2vec_extractor.save_pretrained(output_path)\n",
|
346 |
+
"# model.save_pretrained(output_path)"
|
347 |
+
]
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"metadata": {
|
351 |
+
"kernelspec": {
|
352 |
+
"display_name": "Python 3 (ipykernel)",
|
353 |
+
"language": "python",
|
354 |
+
"name": "python3"
|
355 |
+
},
|
356 |
+
"language_info": {
|
357 |
+
"codemirror_mode": {
|
358 |
+
"name": "ipython",
|
359 |
+
"version": 3
|
360 |
+
},
|
361 |
+
"file_extension": ".py",
|
362 |
+
"mimetype": "text/x-python",
|
363 |
+
"name": "python",
|
364 |
+
"nbconvert_exporter": "python",
|
365 |
+
"pygments_lexer": "ipython3",
|
366 |
+
"version": "3.9.7"
|
367 |
+
}
|
368 |
+
},
|
369 |
+
"nbformat": 4,
|
370 |
+
"nbformat_minor": 5
|
371 |
+
}
|
training/end2end_training.ipynb
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "9e852db9",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# This notebook is currently designed for a GPU using fp16. Hyperparameters however are barely tuned."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "e730080b",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import json\n",
|
21 |
+
"import random\n",
|
22 |
+
"import torch\n",
|
23 |
+
"from pathlib import Path\n",
|
24 |
+
"from accelerate import Accelerator\n",
|
25 |
+
"from datasets import load_dataset, concatenate_datasets\n",
|
26 |
+
"from datasets.features import Audio\n",
|
27 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
28 |
+
"from torch.optim import AdamW\n",
|
29 |
+
"from torch.utils.tensorboard import SummaryWriter\n",
|
30 |
+
"from transformers import AutoTokenizer, Wav2Vec2FeatureExtractor\n",
|
31 |
+
"from wer import calculate_wer # Not what's used in eval.py.\n",
|
32 |
+
"from model import Wav2VecGPT2Model"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": null,
|
38 |
+
"id": "72af6337",
|
39 |
+
"metadata": {
|
40 |
+
"scrolled": true
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"common_voice = load_dataset('mozilla-foundation/common_voice_7_0', 'de', use_auth_token=True)"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"id": "6396e61d",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"EXPERIMENT_NAME = '00'\n",
|
55 |
+
"\n",
|
56 |
+
"model_dir = Path('end2end/de') / EXPERIMENT_NAME\n",
|
57 |
+
"log_dir = model_dir / 'logs'\n",
|
58 |
+
"log_dir.mkdir(exist_ok=True, parents=True)\n",
|
59 |
+
"\n",
|
60 |
+
"config = {\n",
|
61 |
+
" 'encoder_id': 'jonatasgrosman/wav2vec2-large-xlsr-53-german',\n",
|
62 |
+
" 'decoder_id': 'dbmdz/german-gpt2',\n",
|
63 |
+
" 'decoder_pad_token': '_',\n",
|
64 |
+
" 'decoder_bos_token': '~',\n",
|
65 |
+
" 'num_beams': 1,\n",
|
66 |
+
" 'num_val_examples': 1500,\n",
|
67 |
+
" 'batch_size': 8,\n",
|
68 |
+
" 'base_lr': 3e-4,\n",
|
69 |
+
" 'weight_decay': 0.,\n",
|
70 |
+
" 'accumulate_grad': 4,\n",
|
71 |
+
" 'max_epochs': 10,\n",
|
72 |
+
" 'max_len': 36 # len(max(tokenizer(common_voice['validation']['sentence'] + common_voice['test']['sentence']).input_ids, key=len))"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"id": "6c632a61",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"tokenizer = AutoTokenizer.from_pretrained(config['decoder_id'])\n",
|
83 |
+
"tokenizer.add_special_tokens({'pad_token': config['decoder_pad_token'], 'bos_token': config['decoder_bos_token']})\n",
|
84 |
+
"\n",
|
85 |
+
"wave2vec_extractor = Wav2Vec2FeatureExtractor.from_pretrained(config['encoder_id'])\n",
|
86 |
+
"\n",
|
87 |
+
"model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
88 |
+
" config['encoder_id'], config['decoder_id'], max_length=config['max_len'], num_beams=config['num_beams']\n",
|
89 |
+
")\n",
|
90 |
+
"\n",
|
91 |
+
"model.config.decoder_start_token_id = tokenizer.bos_token_id\n",
|
92 |
+
"model.config.pad_token_id = tokenizer.pad_token_id"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"id": "30e5b73c",
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"# Load model from decoder-only training.\n",
|
103 |
+
"model.load_state_dict(torch.load('decoder_only/de/00/model.pt'))"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"id": "5466e908",
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"class AudioDataset(Dataset):\n",
|
114 |
+
" \n",
|
115 |
+
" def __init__(self, ds):\n",
|
116 |
+
" self.ds = ds\n",
|
117 |
+
" \n",
|
118 |
+
" def __len__(self):\n",
|
119 |
+
" return len(self.ds)\n",
|
120 |
+
" \n",
|
121 |
+
" def __getitem__(self, idx):\n",
|
122 |
+
" eg = self.ds[idx]\n",
|
123 |
+
" return eg['audio']['array'], eg['sentence']\n",
|
124 |
+
" \n",
|
125 |
+
"def collate_fn(examples):\n",
|
126 |
+
" # Remove the longest examples, should be only three and these may lead to OOM- or Index-Errors.\n",
|
127 |
+
" examples = [eg for eg in examples if len(eg[0]) < 300_000]\n",
|
128 |
+
" \n",
|
129 |
+
" audio_features = wave2vec_extractor(\n",
|
130 |
+
" [eg[0] for eg in examples], sampling_rate=16_000, return_tensors='pt', padding='longest'\n",
|
131 |
+
" ).input_values\n",
|
132 |
+
" \n",
|
133 |
+
" input_ids = tokenizer(\n",
|
134 |
+
" [eg[1] for eg in examples], return_tensors='pt', padding=True\n",
|
135 |
+
" ).input_ids\n",
|
136 |
+
" \n",
|
137 |
+
" return audio_features, input_ids"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": null,
|
143 |
+
"id": "0453ccc1",
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"train = common_voice['train'].cast_column('audio', Audio(sampling_rate=16_000))\n",
|
148 |
+
"val = common_voice['validation'].cast_column('audio', Audio(sampling_rate=16_000))"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": null,
|
154 |
+
"id": "ad81c9ab",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"random.seed(419)\n",
|
159 |
+
"val_inds = list(range(len(common_voice['validation'])))\n",
|
160 |
+
"random.shuffle(val_inds)\n",
|
161 |
+
"\n",
|
162 |
+
"train_ds = AudioDataset(concatenate_datasets([train, val.select(val_inds[config['num_val_examples']:])]))\n",
|
163 |
+
"val_ds = AudioDataset(val.select(val_inds[:config['num_val_examples']]))\n",
|
164 |
+
"\n",
|
165 |
+
"train_dl = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True, collate_fn=collate_fn, num_workers=4)\n",
|
166 |
+
"val_dl = DataLoader(val_ds, batch_size=config['batch_size'], shuffle=False, collate_fn=collate_fn, num_workers=4)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"id": "f0d1c290",
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"accelerator = Accelerator(fp16=True)\n",
|
177 |
+
"print(f'Using {accelerator.device}.')"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": null,
|
183 |
+
"id": "2af1f2f1",
|
184 |
+
"metadata": {},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"optimizer = AdamW(model.parameters(), lr=config['base_lr'], weight_decay=config['weight_decay'])"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"id": "6921d32c",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"model, optimizer, train_dl, val_dl = accelerator.prepare(model, optimizer, train_dl, val_dl)"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": null,
|
203 |
+
"id": "d699c404",
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"with open(log_dir / 'config.json', 'w') as config_file:\n",
|
208 |
+
" json.dump(config, config_file, indent=4)\n",
|
209 |
+
" \n",
|
210 |
+
"writer = SummaryWriter(log_dir)\n",
|
211 |
+
"val_golds = common_voice['validation'].select(val_inds[:config['num_val_examples']])['sentence']\n",
|
212 |
+
"best_val_wer = 10.\n",
|
213 |
+
"global_train_step = 0\n",
|
214 |
+
"\n",
|
215 |
+
"for epoch in range(config['max_epochs']):\n",
|
216 |
+
" model.train()\n",
|
217 |
+
" for batch_step, (audio_features, input_ids) in enumerate(train_dl):\n",
|
218 |
+
" global_train_step += 1\n",
|
219 |
+
" \n",
|
220 |
+
" out = model(labels=input_ids, input_values=audio_features)\n",
|
221 |
+
" accelerator.backward(out.loss)\n",
|
222 |
+
" writer.add_scalar('train_loss', out.loss.item(), global_train_step)\n",
|
223 |
+
" \n",
|
224 |
+
" if (batch_step + 1) % config['accumulate_grad'] == 0:\n",
|
225 |
+
" optimizer.step()\n",
|
226 |
+
" optimizer.zero_grad()\n",
|
227 |
+
" if batch_step % 300 == 0:\n",
|
228 |
+
" print(out.loss.item())\n",
|
229 |
+
" \n",
|
230 |
+
" model.eval()\n",
|
231 |
+
" val_preds = []\n",
|
232 |
+
" for audio_features, input_ids in val_dl:\n",
|
233 |
+
" with torch.no_grad():\n",
|
234 |
+
" generated = model.generate(audio_features)\n",
|
235 |
+
" val_preds += tokenizer.batch_decode(generated)\n",
|
236 |
+
" val_preds = [pred.lstrip('~').rstrip('_') for pred in val_preds]\n",
|
237 |
+
" wer = calculate_wer(val_preds, val_golds)\n",
|
238 |
+
" writer.add_scalar('val_wer', wer, epoch)\n",
|
239 |
+
" print('WER: ', wer)\n",
|
240 |
+
" \n",
|
241 |
+
" if wer < best_val_wer:\n",
|
242 |
+
" torch.save(model.state_dict(), model_dir / 'model.pt')\n",
|
243 |
+
" print('Saved Model.')\n",
|
244 |
+
" best_val_wer = wer"
|
245 |
+
]
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"metadata": {
|
249 |
+
"kernelspec": {
|
250 |
+
"display_name": "Python 3 (ipykernel)",
|
251 |
+
"language": "python",
|
252 |
+
"name": "python3"
|
253 |
+
},
|
254 |
+
"language_info": {
|
255 |
+
"codemirror_mode": {
|
256 |
+
"name": "ipython",
|
257 |
+
"version": 3
|
258 |
+
},
|
259 |
+
"file_extension": ".py",
|
260 |
+
"mimetype": "text/x-python",
|
261 |
+
"name": "python",
|
262 |
+
"nbconvert_exporter": "python",
|
263 |
+
"pygments_lexer": "ipython3",
|
264 |
+
"version": "3.9.7"
|
265 |
+
}
|
266 |
+
},
|
267 |
+
"nbformat": 4,
|
268 |
+
"nbformat_minor": 5
|
269 |
+
}
|
training/model.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import SpeechEncoderDecoderModel
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import CrossEntropyLoss
|
5 |
+
from transformers.models.encoder_decoder.modeling_encoder_decoder import shift_tokens_right
|
6 |
+
from transformers.modeling_outputs import Seq2SeqLMOutput
|
7 |
+
|
8 |
+
class Wav2VecGPT2Model(SpeechEncoderDecoderModel):
|
9 |
+
"""
|
10 |
+
Basically the same as `SpeechEncoderDecoderModel` but position embeddings (initialized with GPT2's position
|
11 |
+
embeddings) are added to encoder output
|
12 |
+
"""
|
13 |
+
def __init__(self, *args, **kwargs):
|
14 |
+
super().__init__(*args, **kwargs)
|
15 |
+
self.encoder_outputs_pos_emb = nn.Embedding(1024, self.decoder.config.hidden_size)
|
16 |
+
with torch.no_grad():
|
17 |
+
self.encoder_outputs_pos_emb.weight.copy_(self.decoder.transformer.wpe.weight)
|
18 |
+
self.enc_to_dec_proj_ln = nn.LayerNorm(self.decoder.config.hidden_size,
|
19 |
+
eps=self.decoder.config.layer_norm_epsilon)
|
20 |
+
|
21 |
+
def __getattribute__(self, name):
|
22 |
+
# Fake class so it is recognized as seq2seq model.
|
23 |
+
if name == '__class__':
|
24 |
+
return SpeechEncoderDecoderModel
|
25 |
+
return SpeechEncoderDecoderModel.__getattribute__(self, name)
|
26 |
+
|
27 |
+
def forward(
|
28 |
+
self,
|
29 |
+
inputs=None,
|
30 |
+
attention_mask=None,
|
31 |
+
decoder_input_ids=None,
|
32 |
+
decoder_attention_mask=None,
|
33 |
+
encoder_outputs=None,
|
34 |
+
past_key_values=None,
|
35 |
+
decoder_inputs_embeds=None,
|
36 |
+
labels=None,
|
37 |
+
use_cache=None,
|
38 |
+
output_attentions=None,
|
39 |
+
output_hidden_states=None,
|
40 |
+
input_values=None,
|
41 |
+
input_features=None,
|
42 |
+
return_dict=None,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
46 |
+
|
47 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
48 |
+
|
49 |
+
kwargs_decoder = {
|
50 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
51 |
+
}
|
52 |
+
|
53 |
+
if encoder_outputs is None and inputs is None:
|
54 |
+
if input_values is not None and input_features is not None:
|
55 |
+
raise ValueError("You cannot specify both input_values and input_features at the same time")
|
56 |
+
elif input_values is not None:
|
57 |
+
inputs = input_values
|
58 |
+
elif input_features is not None:
|
59 |
+
inputs = input_features
|
60 |
+
else:
|
61 |
+
raise ValueError("You have to specify either input_values or input_features")
|
62 |
+
|
63 |
+
encoder_outputs = self.encoder(
|
64 |
+
inputs,
|
65 |
+
attention_mask=attention_mask,
|
66 |
+
output_attentions=output_attentions,
|
67 |
+
output_hidden_states=output_hidden_states,
|
68 |
+
return_dict=return_dict,
|
69 |
+
**kwargs_encoder,
|
70 |
+
)
|
71 |
+
|
72 |
+
encoder_hidden_states = encoder_outputs[0]
|
73 |
+
|
74 |
+
# optionally project encoder_hidden_states
|
75 |
+
if (
|
76 |
+
self.encoder_output_dim != self.decoder.config.hidden_size
|
77 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
78 |
+
):
|
79 |
+
# TODO: Truncate and warn if the sequence length is greater than 1024!
|
80 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
81 |
+
encoder_hidden_states += self.encoder_outputs_pos_emb(
|
82 |
+
torch.arange(0, encoder_hidden_states.shape[1], device=encoder_hidden_states.device)
|
83 |
+
)
|
84 |
+
encoder_hidden_states = self.enc_to_dec_proj_ln(encoder_hidden_states)
|
85 |
+
|
86 |
+
# compute correct encoder attention mask
|
87 |
+
if attention_mask is not None:
|
88 |
+
encoder_attention_mask = self.encoder._get_feature_vector_attention_mask(
|
89 |
+
encoder_hidden_states.shape[1], attention_mask
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
encoder_attention_mask = None
|
93 |
+
|
94 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
95 |
+
decoder_input_ids = shift_tokens_right(
|
96 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
97 |
+
)
|
98 |
+
|
99 |
+
# Decode
|
100 |
+
decoder_outputs = self.decoder(
|
101 |
+
input_ids=decoder_input_ids,
|
102 |
+
attention_mask=decoder_attention_mask,
|
103 |
+
encoder_hidden_states=encoder_hidden_states,
|
104 |
+
encoder_attention_mask=encoder_attention_mask,
|
105 |
+
inputs_embeds=decoder_inputs_embeds,
|
106 |
+
output_attentions=output_attentions,
|
107 |
+
output_hidden_states=output_hidden_states,
|
108 |
+
use_cache=use_cache,
|
109 |
+
past_key_values=past_key_values,
|
110 |
+
return_dict=return_dict,
|
111 |
+
**kwargs_decoder,
|
112 |
+
)
|
113 |
+
|
114 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
115 |
+
loss = None
|
116 |
+
if labels is not None:
|
117 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
118 |
+
loss_fct = CrossEntropyLoss()
|
119 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
|
120 |
+
|
121 |
+
if not return_dict:
|
122 |
+
if loss is not None:
|
123 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
124 |
+
else:
|
125 |
+
return decoder_outputs + encoder_outputs
|
126 |
+
|
127 |
+
return Seq2SeqLMOutput(
|
128 |
+
loss=loss,
|
129 |
+
logits=decoder_outputs.logits,
|
130 |
+
past_key_values=decoder_outputs.past_key_values,
|
131 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
132 |
+
decoder_attentions=decoder_outputs.attentions,
|
133 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
134 |
+
encoder_last_hidden_state=encoder_outputs[0],
|
135 |
+
encoder_hidden_states=getattr(encoder_outputs, 'hidden_states', None), # TODO: only temporary (inconsistant)
|
136 |
+
encoder_attentions=getattr(encoder_outputs, 'attentions', None),
|
137 |
+
)
|
training/wer.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jiwer
|
2 |
+
|
3 |
+
def calculate_wer(predictions, golds):
|
4 |
+
|
5 |
+
transformation = jiwer.Compose([
|
6 |
+
jiwer.ToLowerCase(),
|
7 |
+
jiwer.RemoveWhiteSpace(replace_by_space=True),
|
8 |
+
jiwer.RemoveMultipleSpaces(),
|
9 |
+
jiwer.Strip(),
|
10 |
+
jiwer.ReduceToListOfListOfWords(word_delimiter=" ")
|
11 |
+
])
|
12 |
+
return jiwer.wer(golds, predictions, truth_transform=transformation, hypothesis_transform=transformation)
|