--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 04cd9d58-77d2-4065-abb8-8b161a76432d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: false chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6b7f345b3a36b0b6_train_data.json ds_type: json format: custom path: /workspace/input_data/6b7f345b3a36b0b6_train_data.json type: field_input: dg_i field_instruction: prompt field_output: dg_o format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null devices: - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: jssky/04cd9d58-77d2-4065-abb8-8b161a76432d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 1 mlflow_experiment_name: /tmp/6b7f345b3a36b0b6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 num_gpus: 8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_batch_size: 32 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 04cd9d58-77d2-4065-abb8-8b161a76432d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 04cd9d58-77d2-4065-abb8-8b161a76432d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 04cd9d58-77d2-4065-abb8-8b161a76432d This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2521 | 0.0003 | 1 | 0.3843 | | 0.283 | 0.0008 | 3 | 0.3339 | | 0.1424 | 0.0016 | 6 | 0.1750 | | 0.07 | 0.0024 | 9 | 0.0556 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1