jssky commited on
Commit
56df396
1 Parent(s): f10128e

End of training

Browse files
Files changed (2) hide show
  1. README.md +155 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.5.2`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 08d89b9226f6ebd3_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/08d89b9226f6ebd3_train_data.json
32
+ type:
33
+ field_input: "\u95A2\u9023"
34
+ field_instruction: "\u666F\u6C17\u306E\u73FE\u72B6\u5224\u65AD"
35
+ field_output: "\u8FFD\u52A0\u8AAC\u660E\u53CA\u3073\u5177\u4F53\u7684\u72B6\u6CC1\
36
+ \u306E\u8AAC\u660E"
37
+ format: '{instruction} {input}'
38
+ no_input_format: '{instruction}'
39
+ system_format: '{system}'
40
+ system_prompt: ''
41
+ debug: null
42
+ deepspeed: null
43
+ early_stopping_patience: 1
44
+ eval_max_new_tokens: 128
45
+ eval_steps: 25
46
+ eval_table_size: null
47
+ flash_attention: false
48
+ fp16: false
49
+ fsdp: null
50
+ fsdp_config: null
51
+ gradient_accumulation_steps: 16
52
+ gradient_checkpointing: true
53
+ group_by_length: true
54
+ hub_model_id: jssky/74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
55
+ hub_repo: null
56
+ hub_strategy: checkpoint
57
+ hub_token: null
58
+ learning_rate: 0.0001
59
+ load_in_4bit: false
60
+ load_in_8bit: false
61
+ local_rank: null
62
+ logging_steps: 1
63
+ lora_alpha: 64
64
+ lora_dropout: 0.05
65
+ lora_fan_in_fan_out: null
66
+ lora_model_dir: null
67
+ lora_r: 32
68
+ lora_target_linear: true
69
+ lr_scheduler: cosine
70
+ max_steps: 50
71
+ micro_batch_size: 2
72
+ mlflow_experiment_name: /tmp/08d89b9226f6ebd3_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_epochs: 3
75
+ optimizer: adamw_torch
76
+ output_dir: miner_id_24
77
+ pad_to_sequence_len: true
78
+ resume_from_checkpoint: null
79
+ s2_attention: null
80
+ sample_packing: false
81
+ save_steps: 25
82
+ sequence_len: 2048
83
+ strict: false
84
+ tf32: false
85
+ tokenizer_type: AutoTokenizer
86
+ train_on_inputs: false
87
+ trust_remote_code: true
88
+ val_set_size: 0.05
89
+ wandb_entity: null
90
+ wandb_mode: online
91
+ wandb_name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
92
+ wandb_project: Gradients-On-Demand
93
+ wandb_run: your_name
94
+ wandb_runid: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
95
+ warmup_ratio: 0.05
96
+ weight_decay: 0.01
97
+ xformers_attention: true
98
+
99
+ ```
100
+
101
+ </details><br>
102
+
103
+ # 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
104
+
105
+ This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset.
106
+ It achieves the following results on the evaluation set:
107
+ - Loss: 2.1691
108
+
109
+ ## Model description
110
+
111
+ More information needed
112
+
113
+ ## Intended uses & limitations
114
+
115
+ More information needed
116
+
117
+ ## Training and evaluation data
118
+
119
+ More information needed
120
+
121
+ ## Training procedure
122
+
123
+ ### Training hyperparameters
124
+
125
+ The following hyperparameters were used during training:
126
+ - learning_rate: 0.0001
127
+ - train_batch_size: 2
128
+ - eval_batch_size: 2
129
+ - seed: 42
130
+ - distributed_type: multi-GPU
131
+ - num_devices: 4
132
+ - gradient_accumulation_steps: 16
133
+ - total_train_batch_size: 128
134
+ - total_eval_batch_size: 8
135
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 2
138
+ - training_steps: 50
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 3.0418 | 0.0004 | 1 | 3.7286 |
145
+ | 2.0656 | 0.0104 | 25 | 2.2520 |
146
+ | 2.0195 | 0.0207 | 50 | 2.1691 |
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - PEFT 0.13.2
152
+ - Transformers 4.46.3
153
+ - Pytorch 2.3.1+cu121
154
+ - Datasets 3.1.0
155
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8145cb24b7a942baf310c0531d03f536a15eccdf5403f2edea72747869e0a5
3
+ size 335706186