--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 08d89b9226f6ebd3_train_data.json ds_type: json format: custom path: /workspace/input_data/08d89b9226f6ebd3_train_data.json type: field_input: "\u95A2\u9023" field_instruction: "\u666F\u6C17\u306E\u73FE\u72B6\u5224\u65AD" field_output: "\u8FFD\u52A0\u8AAC\u660E\u53CA\u3073\u5177\u4F53\u7684\u72B6\u6CC1\ \u306E\u8AAC\u660E" format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: true hub_model_id: jssky/74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/08d89b9226f6ebd3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: true ```

# 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0418 | 0.0004 | 1 | 3.7286 | | 2.0656 | 0.0104 | 25 | 2.2520 | | 2.0195 | 0.0207 | 50 | 2.1691 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3