---
library_name: peft
license: llama3
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.5.2`
```yaml
adapter: lora
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 08d89b9226f6ebd3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/08d89b9226f6ebd3_train_data.json
type:
field_input: "\u95A2\u9023"
field_instruction: "\u666F\u6C17\u306E\u73FE\u72B6\u5224\u65AD"
field_output: "\u8FFD\u52A0\u8AAC\u660E\u53CA\u3073\u5177\u4F53\u7684\u72B6\u6CC1\
\u306E\u8AAC\u660E"
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: jssky/74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/08d89b9226f6ebd3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true
```
# 74f5bf43-4a1b-44bb-9b95-6b5631ccfc3e
This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.0418 | 0.0004 | 1 | 3.7286 |
| 2.0656 | 0.0104 | 25 | 2.2520 |
| 2.0195 | 0.0207 | 50 | 2.1691 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3