jssky commited on
Commit
dca7c23
1 Parent(s): bde6bcb

End of training

Browse files
Files changed (2) hide show
  1. README.md +153 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: mit
4
+ base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 7d70b9ab-7540-44e4-a5c2-6e0d2dacdcdf
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - e57f9a6c682f82b4_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/e57f9a6c682f82b4_train_data.json
32
+ type:
33
+ field_instruction: problem
34
+ field_output: solution
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: 1
42
+ eval_max_new_tokens: 128
43
+ eval_steps: 25
44
+ eval_table_size: null
45
+ flash_attention: false
46
+ fp16: false
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 16
50
+ gradient_checkpointing: true
51
+ group_by_length: true
52
+ hub_model_id: jssky/7d70b9ab-7540-44e4-a5c2-6e0d2dacdcdf
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0001
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 64
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 32
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_steps: 50
69
+ micro_batch_size: 2
70
+ mlflow_experiment_name: /tmp/e57f9a6c682f82b4_train_data.json
71
+ model_type: AutoModelForCausalLM
72
+ num_epochs: 3
73
+ optimizer: adamw_torch
74
+ output_dir: miner_id_24
75
+ pad_to_sequence_len: true
76
+ resume_from_checkpoint: null
77
+ s2_attention: null
78
+ sample_packing: false
79
+ save_steps: 25
80
+ sequence_len: 2048
81
+ strict: false
82
+ tf32: false
83
+ tokenizer_type: AutoTokenizer
84
+ train_on_inputs: false
85
+ trust_remote_code: true
86
+ val_set_size: 0.05
87
+ wandb_entity: null
88
+ wandb_mode: online
89
+ wandb_name: 7d70b9ab-7540-44e4-a5c2-6e0d2dacdcdf
90
+ wandb_project: Gradients-On-Demand
91
+ wandb_run: your_name
92
+ wandb_runid: 7d70b9ab-7540-44e4-a5c2-6e0d2dacdcdf
93
+ warmup_ratio: 0.05
94
+ weight_decay: 0.01
95
+ xformers_attention: null
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ # 7d70b9ab-7540-44e4-a5c2-6e0d2dacdcdf
102
+
103
+ This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset.
104
+ It achieves the following results on the evaluation set:
105
+ - Loss: 0.5200
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 0.0001
125
+ - train_batch_size: 2
126
+ - eval_batch_size: 2
127
+ - seed: 42
128
+ - distributed_type: multi-GPU
129
+ - num_devices: 4
130
+ - gradient_accumulation_steps: 16
131
+ - total_train_batch_size: 128
132
+ - total_eval_batch_size: 8
133
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 2
136
+ - training_steps: 50
137
+
138
+ ### Training results
139
+
140
+ | Training Loss | Epoch | Step | Validation Loss |
141
+ |:-------------:|:------:|:----:|:---------------:|
142
+ | 8.4242 | 0.0113 | 1 | 0.8281 |
143
+ | 8.3784 | 0.2829 | 25 | 0.5269 |
144
+ | 7.8565 | 0.5658 | 50 | 0.5200 |
145
+
146
+
147
+ ### Framework versions
148
+
149
+ - PEFT 0.13.2
150
+ - Transformers 4.46.0
151
+ - Pytorch 2.5.0+cu124
152
+ - Datasets 3.0.1
153
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:474e6ed3ce41846200c485a2e7e54cc326084caa4092edb7cf2f27c43eefa7ca
3
+ size 445760970