--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: d3c80ab7-7292-44e3-b0b0-1b476f14caa1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: false chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fc84b16335bd5835_train_data.json ds_type: json format: custom path: /workspace/input_data/fc84b16335bd5835_train_data.json type: field_input: content field_instruction: chapter field_output: summary_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null devices: - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: jssky/d3c80ab7-7292-44e3-b0b0-1b476f14caa1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 20 micro_batch_size: 1 mlflow_experiment_name: /tmp/fc84b16335bd5835_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 num_gpus: 8 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer train_batch_size: 16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d3c80ab7-7292-44e3-b0b0-1b476f14caa1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d3c80ab7-7292-44e3-b0b0-1b476f14caa1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d3c80ab7-7292-44e3-b0b0-1b476f14caa1 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.6743 | 0.0028 | 1 | 7.1293 | | 7.7426 | 0.0141 | 5 | 7.0973 | | 7.0417 | 0.0283 | 10 | 6.3321 | | 5.7705 | 0.0424 | 15 | 5.4978 | | 5.6954 | 0.0565 | 20 | 5.1046 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1