Add: training script
Browse files
train.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
from torchvision import datasets, transforms
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from model import ColorNet
|
10 |
+
|
11 |
+
|
12 |
+
transform = transforms.Compose([
|
13 |
+
transforms.ToTensor()
|
14 |
+
])
|
15 |
+
|
16 |
+
train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
|
17 |
+
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transform, download=True)
|
18 |
+
|
19 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
20 |
+
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
21 |
+
|
22 |
+
model = ColorNet()
|
23 |
+
criterion = nn.MSELoss()
|
24 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
25 |
+
|
26 |
+
model.train_model(model, train_loader, criterion, optimizer, num_epochs=10)
|