File size: 2,369 Bytes
157ff51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: bookbot/distil-ast-audioset
tags:
- generated_from_trainer
datasets:
- Nooon/Donate_a_cry
metrics:
- accuracy
model-index:
- name: distil-ast-audioset-finetuned-cry
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: DonateACry
type: Nooon/Donate_a_cry
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 0.9347826086956522
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distil-ast-audioset-finetuned-cry
This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the DonateACry dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2731
- Accuracy: 0.9348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.424 | 1.0 | 46 | 0.2375 | 0.9565 |
| 0.5755 | 2.0 | 92 | 0.3218 | 0.9565 |
| 0.5466 | 3.0 | 138 | 0.1731 | 0.9565 |
| 0.3545 | 4.0 | 184 | 0.2719 | 0.9348 |
| 0.0759 | 5.0 | 230 | 0.1582 | 0.9348 |
| 0.0178 | 6.0 | 276 | 0.2576 | 0.9130 |
| 0.0032 | 7.0 | 322 | 0.2695 | 0.9348 |
| 0.0014 | 8.0 | 368 | 0.2496 | 0.9348 |
| 0.0005 | 9.0 | 414 | 0.2639 | 0.9348 |
| 0.0004 | 10.0 | 460 | 0.2731 | 0.9348 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|