jsunn-y
commited on
Commit
•
6d75398
1
Parent(s):
dde65c9
added the model file
Browse files
model.py
ADDED
@@ -0,0 +1,1090 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified forward-pass implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
|
16 |
+
import math
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Optional, Tuple, Union, Dict
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.cache_utils import Cache, DynamicCache
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPast as _BaseModelOutputWithPast,
|
29 |
+
)
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
CausalLMOutputWithPast as _CausalLMOutputWithPast,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import logging
|
35 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
36 |
+
|
37 |
+
from .adapter import ParallelAdapterLayer, ProjectionMLP
|
38 |
+
from .config import ProGenConfig, ProGenConditionalConfig
|
39 |
+
from ..utils import exists
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class BaseModelOutputWithPast(_BaseModelOutputWithPast):
|
45 |
+
inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class CausalLMOutputWithPast(_CausalLMOutputWithPast):
|
50 |
+
all_losses: Optional[torch.FloatTensor] = None
|
51 |
+
inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None
|
52 |
+
|
53 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
54 |
+
dim = x.shape[-1]
|
55 |
+
if seq_len is None:
|
56 |
+
seq_len = x.shape[seq_dim]
|
57 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
58 |
+
sinusoid_inp = (
|
59 |
+
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq).to(x.device).float()
|
60 |
+
)
|
61 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
62 |
+
|
63 |
+
|
64 |
+
def rotate_every_two(x):
|
65 |
+
x1 = x[:, :, :, ::2]
|
66 |
+
x2 = x[:, :, :, 1::2]
|
67 |
+
x = torch.stack((-x2, x1), axis=-1)
|
68 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
69 |
+
|
70 |
+
|
71 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
72 |
+
sin, cos = map(
|
73 |
+
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(2, 3), sincos
|
74 |
+
)
|
75 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
76 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
77 |
+
|
78 |
+
|
79 |
+
class ProGenAttention(nn.Module):
|
80 |
+
def __init__(self, config):
|
81 |
+
super().__init__()
|
82 |
+
self.config = config
|
83 |
+
|
84 |
+
max_positions = config.max_position_embeddings
|
85 |
+
self.register_buffer(
|
86 |
+
"bias",
|
87 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
88 |
+
1, 1, max_positions, max_positions
|
89 |
+
),
|
90 |
+
)
|
91 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
92 |
+
|
93 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
94 |
+
self.attn_pdrop = config.attn_pdrop
|
95 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
96 |
+
|
97 |
+
self.embed_dim = config.hidden_size
|
98 |
+
self.num_attention_heads = config.num_attention_heads
|
99 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
100 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
101 |
+
raise ValueError(
|
102 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and `num_attention_heads`: {self.num_attention_heads})."
|
103 |
+
)
|
104 |
+
self.scale_attn = math.sqrt(self.head_dim)
|
105 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
106 |
+
|
107 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
108 |
+
self.rotary_dim = None
|
109 |
+
if config.rotary_dim is not None:
|
110 |
+
self.rotary_dim = config.rotary_dim
|
111 |
+
|
112 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
113 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
114 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
115 |
+
return reshaped
|
116 |
+
|
117 |
+
def _naive_attn(
|
118 |
+
self,
|
119 |
+
query,
|
120 |
+
key,
|
121 |
+
value,
|
122 |
+
attention_mask=None,
|
123 |
+
):
|
124 |
+
# compute causal mask from causal mask buffer
|
125 |
+
batch_size, query_length, key_length = query.size(0), query.size(-2), key.size(-2)
|
126 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
127 |
+
|
128 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2)) / self.scale_attn
|
129 |
+
attn_weights = torch.where(
|
130 |
+
causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)
|
131 |
+
)
|
132 |
+
|
133 |
+
if attention_mask is not None:
|
134 |
+
# Apply the attention mask
|
135 |
+
attn_weights = attn_weights + attention_mask
|
136 |
+
|
137 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
138 |
+
attn_weights = self.attn_dropout(attn_weights)
|
139 |
+
attn_output = torch.matmul(attn_weights, value)
|
140 |
+
|
141 |
+
expected_size = (batch_size, self.num_attention_heads, query_length, self.head_dim)
|
142 |
+
if attn_output.size() != expected_size:
|
143 |
+
raise ValueError(
|
144 |
+
f"`attn_output` should be of size {expected_size}, but is {attn_output.size()}"
|
145 |
+
)
|
146 |
+
|
147 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
148 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.embed_dim)
|
149 |
+
return attn_output, attn_weights
|
150 |
+
|
151 |
+
def _sdpa_attn(
|
152 |
+
self,
|
153 |
+
query,
|
154 |
+
key,
|
155 |
+
value,
|
156 |
+
attention_mask=None,
|
157 |
+
):
|
158 |
+
bsz, q_len = query.shape[0], query.shape[2]
|
159 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
160 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
161 |
+
if query.device.type == "cuda" and attention_mask is not None:
|
162 |
+
query = query.contiguous()
|
163 |
+
key = key.contiguous()
|
164 |
+
value = value.contiguous()
|
165 |
+
|
166 |
+
attn_output = F.scaled_dot_product_attention(
|
167 |
+
query,
|
168 |
+
key,
|
169 |
+
value,
|
170 |
+
attn_mask=attention_mask,
|
171 |
+
dropout_p=self.attn_pdrop if self.training else 0.0,
|
172 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
173 |
+
is_causal=q_len > 1,
|
174 |
+
scale=1 / self.scale_attn,
|
175 |
+
)
|
176 |
+
|
177 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
178 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim)
|
179 |
+
return attn_output, None
|
180 |
+
|
181 |
+
def forward(
|
182 |
+
self,
|
183 |
+
hidden_states,
|
184 |
+
attention_mask=None,
|
185 |
+
layer_past=None,
|
186 |
+
use_cache=False,
|
187 |
+
output_attentions=False,
|
188 |
+
):
|
189 |
+
qkv = self.qkv_proj(hidden_states)
|
190 |
+
# TODO(enijkamp): factor out number of logical TPU-v3/v4 cores or make forward pass agnostic
|
191 |
+
# mp_num = 4
|
192 |
+
mp_num = 8
|
193 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
194 |
+
|
195 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
196 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
197 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
198 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
199 |
+
|
200 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
201 |
+
value = value.permute(0, 2, 1, 3)
|
202 |
+
|
203 |
+
seq_len = key.shape[1]
|
204 |
+
offset = 0
|
205 |
+
|
206 |
+
if layer_past is not None:
|
207 |
+
offset = layer_past[0].shape[-2]
|
208 |
+
seq_len += offset
|
209 |
+
|
210 |
+
if self.rotary_dim is not None:
|
211 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
212 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
213 |
+
|
214 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
215 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
216 |
+
|
217 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
218 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
219 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
|
220 |
+
|
221 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
222 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
223 |
+
else:
|
224 |
+
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
225 |
+
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
226 |
+
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
227 |
+
|
228 |
+
key = key.permute(0, 2, 1, 3)
|
229 |
+
query = query.permute(0, 2, 1, 3)
|
230 |
+
|
231 |
+
if layer_past is not None:
|
232 |
+
past_key = layer_past[0]
|
233 |
+
past_value = layer_past[1]
|
234 |
+
key = torch.cat((past_key, key), dim=-2)
|
235 |
+
value = torch.cat((past_value, value), dim=-2)
|
236 |
+
|
237 |
+
if use_cache is True:
|
238 |
+
present = (key, value)
|
239 |
+
else:
|
240 |
+
present = None
|
241 |
+
|
242 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
243 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
244 |
+
# cast them back in float16 just to be sure everything works as expected.
|
245 |
+
|
246 |
+
input_dtype = query.dtype
|
247 |
+
if torch.is_autocast_enabled():
|
248 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
249 |
+
# Handle the case where the model is quantized
|
250 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
251 |
+
target_dtype = self.config._pre_quantization_dtype
|
252 |
+
else:
|
253 |
+
target_dtype = self.qkv_proj.weight.dtype #this is giving an issue, but it usually isn't called
|
254 |
+
|
255 |
+
if input_dtype != target_dtype:
|
256 |
+
logger.warning_once(
|
257 |
+
f"The input hidden states seems to be silently casted in {input_dtype}. "
|
258 |
+
f"This might be because you have upcasted embedding or layer norm layers "
|
259 |
+
f"in {input_dtype}. We will cast back the input in {target_dtype}."
|
260 |
+
)
|
261 |
+
query = query.to(target_dtype)
|
262 |
+
key = key.to(target_dtype)
|
263 |
+
value = value.to(target_dtype)
|
264 |
+
|
265 |
+
# compute self-attention: V x Softmax(QK^T)
|
266 |
+
if output_attentions:
|
267 |
+
attn_output, attn_weights = self._naive_attn(query, key, value, attention_mask)
|
268 |
+
else:
|
269 |
+
attn_output, attn_weights = self._sdpa_attn(query, key, value, None)
|
270 |
+
attn_output = self.out_proj(attn_output)
|
271 |
+
attn_output = self.resid_dropout(attn_output)
|
272 |
+
|
273 |
+
outputs = (attn_output, present)
|
274 |
+
if output_attentions:
|
275 |
+
outputs += (attn_weights,)
|
276 |
+
|
277 |
+
return outputs
|
278 |
+
|
279 |
+
|
280 |
+
class ProGenMLP(nn.Module):
|
281 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
282 |
+
super().__init__()
|
283 |
+
embed_dim = config.n_embd
|
284 |
+
|
285 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
286 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
287 |
+
|
288 |
+
self.act = ACT2FN[config.activation_function]
|
289 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
290 |
+
|
291 |
+
def forward(self, hidden_states):
|
292 |
+
hidden_states = self.fc_in(hidden_states)
|
293 |
+
hidden_states = self.act(hidden_states)
|
294 |
+
hidden_states = self.fc_out(hidden_states)
|
295 |
+
hidden_states = self.dropout(hidden_states)
|
296 |
+
return hidden_states
|
297 |
+
|
298 |
+
|
299 |
+
class ProGenBlock(nn.Module):
|
300 |
+
def __init__(self, config):
|
301 |
+
super().__init__()
|
302 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
303 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
304 |
+
self.attn = ProGenAttention(config)
|
305 |
+
self.mlp = ProGenMLP(inner_dim, config)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
layer_past=None,
|
311 |
+
attention_mask=None,
|
312 |
+
head_mask=None,
|
313 |
+
adapter_layer=None,
|
314 |
+
adapter_dropout=None,
|
315 |
+
adapter_input=None,
|
316 |
+
use_cache=False,
|
317 |
+
output_attentions=False,
|
318 |
+
):
|
319 |
+
residual = hidden_states
|
320 |
+
hidden_states = self.ln_1(hidden_states)
|
321 |
+
attn_outputs = self.attn(
|
322 |
+
hidden_states,
|
323 |
+
layer_past=layer_past,
|
324 |
+
attention_mask=attention_mask,
|
325 |
+
use_cache=use_cache,
|
326 |
+
output_attentions=output_attentions,
|
327 |
+
)
|
328 |
+
attn_output = attn_outputs[0]
|
329 |
+
outputs = attn_outputs[1:]
|
330 |
+
|
331 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
332 |
+
|
333 |
+
### addition of adapter layer ###
|
334 |
+
if exists(adapter_layer) and exists(adapter_dropout) and exists(
|
335 |
+
adapter_input):
|
336 |
+
|
337 |
+
hidden_states_update = attn_output + feed_forward_hidden_states
|
338 |
+
adapter_out = adapter_layer(hidden_states_update, adapter_input)
|
339 |
+
adapter_out = adapter_dropout(adapter_out)
|
340 |
+
hidden_states_update = hidden_states_update + adapter_out
|
341 |
+
|
342 |
+
hidden_states = hidden_states_update + residual
|
343 |
+
else:
|
344 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
345 |
+
### end of addition of adapter layer ###
|
346 |
+
|
347 |
+
if use_cache:
|
348 |
+
outputs = (hidden_states,) + outputs
|
349 |
+
else:
|
350 |
+
outputs = (hidden_states,) + outputs[1:]
|
351 |
+
|
352 |
+
return outputs
|
353 |
+
|
354 |
+
|
355 |
+
class ProGenPreTrainedModel(PreTrainedModel):
|
356 |
+
"""An abstract class to handle weights initialization and a simple interface for downloading
|
357 |
+
and loading pretrained models."""
|
358 |
+
|
359 |
+
config_class = ProGenConfig
|
360 |
+
base_model_prefix = "transformer"
|
361 |
+
is_parallelizable = True
|
362 |
+
_no_split_modules = ["ProGenBlock"]
|
363 |
+
|
364 |
+
def __init__(self, *inputs, **kwargs):
|
365 |
+
super().__init__(*inputs, **kwargs)
|
366 |
+
|
367 |
+
def _init_weights(self, module):
|
368 |
+
"""Initialize the weights."""
|
369 |
+
if isinstance(module, (nn.Linear,)):
|
370 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
371 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
372 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
373 |
+
if module.bias is not None:
|
374 |
+
module.bias.data.zero_()
|
375 |
+
elif isinstance(module, nn.Embedding):
|
376 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
377 |
+
if module.padding_idx is not None:
|
378 |
+
module.weight.data[module.padding_idx].zero_()
|
379 |
+
elif isinstance(module, nn.LayerNorm):
|
380 |
+
module.bias.data.zero_()
|
381 |
+
module.weight.data.fill_(1.0)
|
382 |
+
|
383 |
+
class ModularProGenModel(ProGenPreTrainedModel):
|
384 |
+
|
385 |
+
def __init__(self, config):
|
386 |
+
super().__init__(config)
|
387 |
+
|
388 |
+
self.embed_dim = config.n_embd
|
389 |
+
self.vocab_size = config.vocab_size
|
390 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
391 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
392 |
+
self.h = nn.ModuleList(
|
393 |
+
[ProGenBlock(config) for _ in range(config.n_layer)])
|
394 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
395 |
+
self.rotary_dim = min(config.rotary_dim,
|
396 |
+
config.n_ctx // config.num_attention_heads)
|
397 |
+
self.init_weights()
|
398 |
+
|
399 |
+
def get_input_embeddings(self):
|
400 |
+
return self.wte
|
401 |
+
|
402 |
+
def set_input_embeddings(self, new_embeddings):
|
403 |
+
self.wte = new_embeddings
|
404 |
+
|
405 |
+
def forward_prep(
|
406 |
+
self,
|
407 |
+
input_ids=None,
|
408 |
+
past_key_values=None,
|
409 |
+
attention_mask=None,
|
410 |
+
token_type_ids=None,
|
411 |
+
position_ids=None,
|
412 |
+
head_mask=None,
|
413 |
+
inputs_embeds=None,
|
414 |
+
use_cache=None,
|
415 |
+
output_attentions=None,
|
416 |
+
output_hidden_states=None,
|
417 |
+
return_dict=None,
|
418 |
+
):
|
419 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
420 |
+
output_hidden_states = (output_hidden_states
|
421 |
+
if output_hidden_states is not None else
|
422 |
+
self.config.output_hidden_states)
|
423 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
424 |
+
|
425 |
+
if getattr(self.config, "gradient_checkpointing",
|
426 |
+
False) and self.training:
|
427 |
+
#print('using gradient checkpointing')
|
428 |
+
if use_cache:
|
429 |
+
use_cache = False
|
430 |
+
|
431 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
432 |
+
|
433 |
+
if input_ids is not None and inputs_embeds is not None:
|
434 |
+
raise ValueError(
|
435 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
436 |
+
)
|
437 |
+
elif input_ids is not None:
|
438 |
+
input_shape = input_ids.size()
|
439 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
440 |
+
batch_size = input_ids.shape[0]
|
441 |
+
elif inputs_embeds is not None:
|
442 |
+
input_shape = inputs_embeds.size()[:-1]
|
443 |
+
batch_size = inputs_embeds.shape[0]
|
444 |
+
else:
|
445 |
+
raise ValueError(
|
446 |
+
"You have to specify either input_ids or inputs_embeds")
|
447 |
+
|
448 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
449 |
+
|
450 |
+
if token_type_ids is not None:
|
451 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
452 |
+
|
453 |
+
if position_ids is not None:
|
454 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
455 |
+
|
456 |
+
if past_key_values is None:
|
457 |
+
past_length = 0
|
458 |
+
past_key_values = tuple([None] * len(self.h))
|
459 |
+
else:
|
460 |
+
past_length = past_key_values[0][0].size(-2)
|
461 |
+
|
462 |
+
if position_ids is None:
|
463 |
+
position_ids = torch.arange(past_length,
|
464 |
+
input_shape[-1] + past_length,
|
465 |
+
dtype=torch.long,
|
466 |
+
device=device)
|
467 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
468 |
+
|
469 |
+
# Attention mask.
|
470 |
+
if attention_mask is not None:
|
471 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
472 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
473 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
474 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
475 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
476 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
477 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
478 |
+
attention_mask = attention_mask[:, None, None, :]
|
479 |
+
|
480 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
481 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
482 |
+
# positions we want to attend and -10000.0 for masked positions.
|
483 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
484 |
+
# effectively the same as removing these entirely.
|
485 |
+
attention_mask = attention_mask.to(
|
486 |
+
dtype=self.dtype) # fp16 compatibility
|
487 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
488 |
+
|
489 |
+
# Prepare head mask if needed
|
490 |
+
# 1.0 in head_mask indicate we keep the head
|
491 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
492 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
493 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
494 |
+
|
495 |
+
return input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict
|
496 |
+
|
497 |
+
def forward_embed(
|
498 |
+
self,
|
499 |
+
input_ids=None,
|
500 |
+
token_type_ids=None,
|
501 |
+
inputs_embeds=None,
|
502 |
+
):
|
503 |
+
if inputs_embeds is None:
|
504 |
+
inputs_embeds = self.wte(input_ids)
|
505 |
+
|
506 |
+
hidden_states = inputs_embeds
|
507 |
+
|
508 |
+
if token_type_ids is not None:
|
509 |
+
token_type_embeds = self.wte(token_type_ids)
|
510 |
+
hidden_states = hidden_states + token_type_embeds
|
511 |
+
|
512 |
+
hidden_states = self.drop(hidden_states)
|
513 |
+
|
514 |
+
return hidden_states
|
515 |
+
|
516 |
+
def forward_layer(
|
517 |
+
self,
|
518 |
+
hidden_states,
|
519 |
+
layer_i,
|
520 |
+
layer_past=None,
|
521 |
+
attention_mask=None,
|
522 |
+
head_mask=None,
|
523 |
+
adapter_layer=None,
|
524 |
+
adapter_dropout=None,
|
525 |
+
adapter_input=None,
|
526 |
+
use_cache=None,
|
527 |
+
output_attentions=None,
|
528 |
+
):
|
529 |
+
if getattr(self.config, "gradient_checkpointing",
|
530 |
+
False) and self.training:
|
531 |
+
if use_cache:
|
532 |
+
logger.warning(
|
533 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
534 |
+
"`use_cache=False`...")
|
535 |
+
use_cache = False
|
536 |
+
|
537 |
+
def create_custom_forward(module):
|
538 |
+
|
539 |
+
def custom_forward(*inputs):
|
540 |
+
# None for past_key_value
|
541 |
+
return module(*inputs, use_cache, output_attentions)
|
542 |
+
|
543 |
+
return custom_forward
|
544 |
+
|
545 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
546 |
+
create_custom_forward(self.h[layer_i]),
|
547 |
+
hidden_states,
|
548 |
+
None,
|
549 |
+
attention_mask,
|
550 |
+
head_mask[layer_i],
|
551 |
+
adapter_layer,
|
552 |
+
adapter_dropout,
|
553 |
+
adapter_input,
|
554 |
+
)
|
555 |
+
else:
|
556 |
+
outputs = self.h[layer_i](
|
557 |
+
hidden_states,
|
558 |
+
layer_past=layer_past,
|
559 |
+
attention_mask=attention_mask,
|
560 |
+
head_mask=head_mask[layer_i],
|
561 |
+
adapter_layer=adapter_layer,
|
562 |
+
adapter_dropout=adapter_dropout,
|
563 |
+
adapter_input=adapter_input,
|
564 |
+
use_cache=use_cache,
|
565 |
+
output_attentions=output_attentions,
|
566 |
+
)
|
567 |
+
|
568 |
+
hidden_states = outputs[0]
|
569 |
+
|
570 |
+
if use_cache:
|
571 |
+
presents = (outputs[1], )
|
572 |
+
else:
|
573 |
+
presents = None
|
574 |
+
|
575 |
+
if output_attentions:
|
576 |
+
self_attentions = outputs[2 if use_cache else 1]
|
577 |
+
else:
|
578 |
+
self_attentions = None
|
579 |
+
|
580 |
+
return hidden_states, presents, self_attentions
|
581 |
+
|
582 |
+
def forward_layers(
|
583 |
+
self,
|
584 |
+
hidden_states,
|
585 |
+
past_key_values=None,
|
586 |
+
attention_mask=None,
|
587 |
+
head_mask=None,
|
588 |
+
use_cache=None,
|
589 |
+
output_attentions=None,
|
590 |
+
output_hidden_states=None,
|
591 |
+
):
|
592 |
+
all_presents = () if use_cache else None
|
593 |
+
all_self_attentions = () if output_attentions else None
|
594 |
+
all_hidden_states = () if output_hidden_states else None
|
595 |
+
for i in range(self.config.n_layer):
|
596 |
+
if output_hidden_states:
|
597 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
598 |
+
|
599 |
+
hidden_states, presents, self_attentions = self.forward_layer(
|
600 |
+
hidden_states,
|
601 |
+
i,
|
602 |
+
layer_past=past_key_values[i]
|
603 |
+
if past_key_values is not None else None,
|
604 |
+
attention_mask=attention_mask,
|
605 |
+
head_mask=head_mask,
|
606 |
+
use_cache=use_cache,
|
607 |
+
output_attentions=output_attentions,
|
608 |
+
)
|
609 |
+
|
610 |
+
if use_cache is True:
|
611 |
+
all_presents = all_presents + presents
|
612 |
+
if output_attentions:
|
613 |
+
all_self_attentions = all_self_attentions + (self_attentions, )
|
614 |
+
|
615 |
+
return hidden_states, all_presents, all_self_attentions, all_hidden_states
|
616 |
+
|
617 |
+
def forward(
|
618 |
+
self,
|
619 |
+
input_ids=None,
|
620 |
+
past_key_values=None,
|
621 |
+
attention_mask=None,
|
622 |
+
token_type_ids=None,
|
623 |
+
position_ids=None,
|
624 |
+
head_mask=None,
|
625 |
+
inputs_embeds=None,
|
626 |
+
use_cache=None,
|
627 |
+
output_attentions=None,
|
628 |
+
output_hidden_states=None,
|
629 |
+
return_dict=None,
|
630 |
+
):
|
631 |
+
input_shape = input_ids.size()
|
632 |
+
input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.forward_prep(
|
633 |
+
input_ids=input_ids,
|
634 |
+
past_key_values=past_key_values,
|
635 |
+
attention_mask=attention_mask,
|
636 |
+
token_type_ids=token_type_ids,
|
637 |
+
position_ids=position_ids,
|
638 |
+
head_mask=head_mask,
|
639 |
+
inputs_embeds=inputs_embeds,
|
640 |
+
use_cache=use_cache,
|
641 |
+
output_attentions=output_attentions,
|
642 |
+
output_hidden_states=output_hidden_states,
|
643 |
+
return_dict=return_dict,
|
644 |
+
)
|
645 |
+
|
646 |
+
hidden_states = self.forward_embed(
|
647 |
+
input_ids=input_ids,
|
648 |
+
token_type_ids=token_type_ids,
|
649 |
+
inputs_embeds=inputs_embeds,
|
650 |
+
)
|
651 |
+
|
652 |
+
hidden_states, all_presents, all_self_attentions, all_hidden_states = self.forward_layers(
|
653 |
+
hidden_states=hidden_states,
|
654 |
+
past_key_values=past_key_values,
|
655 |
+
attention_mask=attention_mask,
|
656 |
+
head_mask=head_mask,
|
657 |
+
use_cache=use_cache,
|
658 |
+
output_attentions=output_attentions,
|
659 |
+
output_hidden_states=output_hidden_states,
|
660 |
+
)
|
661 |
+
|
662 |
+
hidden_states = self(hidden_states)
|
663 |
+
|
664 |
+
output_shape = input_shape + (hidden_states.size(-1), )
|
665 |
+
hidden_states = hidden_states.view(*output_shape)
|
666 |
+
# Add last hidden state
|
667 |
+
if output_hidden_states:
|
668 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
return tuple(v for v in [
|
672 |
+
hidden_states, all_presents, all_hidden_states,
|
673 |
+
all_self_attentions
|
674 |
+
] if v is not None)
|
675 |
+
|
676 |
+
return BaseModelOutputWithPast(
|
677 |
+
last_hidden_state=hidden_states,
|
678 |
+
past_key_values=all_presents,
|
679 |
+
hidden_states=all_hidden_states,
|
680 |
+
attentions=all_self_attentions,
|
681 |
+
)
|
682 |
+
|
683 |
+
class ModularProGenForCausalLM(ProGenPreTrainedModel):
|
684 |
+
_keys_to_ignore_on_load_missing = [
|
685 |
+
r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"
|
686 |
+
]
|
687 |
+
|
688 |
+
def __init__(self, config):
|
689 |
+
super().__init__(config)
|
690 |
+
|
691 |
+
self.transformer = ModularProGenModel(config)
|
692 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
693 |
+
self.init_weights()
|
694 |
+
|
695 |
+
def get_output_embeddings(self):
|
696 |
+
return None
|
697 |
+
|
698 |
+
def set_output_embeddings(self, new_embeddings):
|
699 |
+
return
|
700 |
+
|
701 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
702 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
703 |
+
# only last token for inputs_ids if past is defined in kwargs
|
704 |
+
if past:
|
705 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
706 |
+
if token_type_ids is not None:
|
707 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
708 |
+
|
709 |
+
attention_mask = kwargs.get("attention_mask", None)
|
710 |
+
position_ids = kwargs.get("position_ids", None)
|
711 |
+
|
712 |
+
if attention_mask is not None and position_ids is None:
|
713 |
+
# create position_ids on the fly for batch generation
|
714 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
715 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
716 |
+
if past:
|
717 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
718 |
+
else:
|
719 |
+
position_ids = None
|
720 |
+
return {
|
721 |
+
"input_ids": input_ids,
|
722 |
+
"past_key_values": past,
|
723 |
+
"use_cache": kwargs.get("use_cache"),
|
724 |
+
"position_ids": position_ids,
|
725 |
+
"attention_mask": attention_mask,
|
726 |
+
"token_type_ids": token_type_ids,
|
727 |
+
}
|
728 |
+
|
729 |
+
def forward(
|
730 |
+
self,
|
731 |
+
input_ids=None,
|
732 |
+
past_key_values=None,
|
733 |
+
attention_mask=None,
|
734 |
+
token_type_ids=None,
|
735 |
+
position_ids=None,
|
736 |
+
head_mask=None,
|
737 |
+
inputs_embeds=None,
|
738 |
+
labels=None,
|
739 |
+
use_cache=None,
|
740 |
+
output_attentions=None,
|
741 |
+
output_hidden_states=None,
|
742 |
+
return_dict=None,
|
743 |
+
):
|
744 |
+
r"""
|
745 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
746 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
747 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
748 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
749 |
+
"""
|
750 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
751 |
+
|
752 |
+
transformer_outputs = self.transformer(
|
753 |
+
input_ids,
|
754 |
+
past_key_values=past_key_values,
|
755 |
+
attention_mask=attention_mask,
|
756 |
+
token_type_ids=token_type_ids,
|
757 |
+
position_ids=position_ids,
|
758 |
+
head_mask=head_mask,
|
759 |
+
inputs_embeds=inputs_embeds,
|
760 |
+
use_cache=use_cache,
|
761 |
+
output_attentions=output_attentions,
|
762 |
+
output_hidden_states=output_hidden_states,
|
763 |
+
return_dict=return_dict,
|
764 |
+
)
|
765 |
+
hidden_states = transformer_outputs[0]
|
766 |
+
|
767 |
+
# make sure sampling in fp16 works correctly and
|
768 |
+
# compute loss in fp32 to match with mesh-tf version
|
769 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
770 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
771 |
+
|
772 |
+
loss = None
|
773 |
+
if labels is not None:
|
774 |
+
# Shift so that tokens < n predict n
|
775 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
776 |
+
shift_labels = labels[..., 1:].contiguous()
|
777 |
+
# Flatten the tokens
|
778 |
+
loss_fct = CrossEntropyLoss()
|
779 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
780 |
+
shift_labels.view(-1))
|
781 |
+
|
782 |
+
loss = loss.to(hidden_states.dtype)
|
783 |
+
|
784 |
+
if not return_dict:
|
785 |
+
output = (lm_logits, ) + transformer_outputs[1:]
|
786 |
+
return ((loss, ) + output) if loss is not None else output
|
787 |
+
|
788 |
+
return CausalLMOutputWithPast(
|
789 |
+
loss=loss,
|
790 |
+
logits=lm_logits,
|
791 |
+
past_key_values=transformer_outputs.past_key_values,
|
792 |
+
hidden_states=transformer_outputs.hidden_states,
|
793 |
+
attentions=transformer_outputs.attentions,
|
794 |
+
)
|
795 |
+
|
796 |
+
@staticmethod
|
797 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]],
|
798 |
+
beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
799 |
+
"""
|
800 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
801 |
+
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
802 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
803 |
+
"""
|
804 |
+
return tuple(
|
805 |
+
tuple(
|
806 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
807 |
+
for past_state in layer_past) for layer_past in past)
|
808 |
+
|
809 |
+
|
810 |
+
class ProgenConditional(ProGenPreTrainedModel): #nn.Module
|
811 |
+
def __init__(self, config: ProGenConditionalConfig):
|
812 |
+
super().__init__(config)
|
813 |
+
|
814 |
+
#self.model = ModularProGenForCausalLM.from_pretrained(pretrained_model_name_or_path=config.pretrained_model_dir, config=config)
|
815 |
+
self.model = ModularProGenForCausalLM.from_pretrained("jsunn-y/ProCALM", subfolder="progen2-base", config=config, cache_dir=config.pretrained_model_dir)
|
816 |
+
self.model.requires_grad_(False) #freeze the pretrained model by default
|
817 |
+
|
818 |
+
self.config = config
|
819 |
+
|
820 |
+
self.projection_mlps = torch.nn.ModuleDict() #conditioning encoders
|
821 |
+
if config.adapter_shared_projection == True:
|
822 |
+
n_projection_mlps = 1 #sharing a projector
|
823 |
+
else:
|
824 |
+
n_projection_mlps = len(self.model.transformer.h) #having a projector for every layer
|
825 |
+
|
826 |
+
for key, input_dim in config.encoding_dimensions.items():
|
827 |
+
adapter_projection_layers = nn.ModuleList()
|
828 |
+
for i in range(n_projection_mlps):
|
829 |
+
if config.adapter_projection_nlayers == None:
|
830 |
+
projection_mlp = torch.nn.Linear(input_dim, config.adapter_c_s)
|
831 |
+
else:
|
832 |
+
projection_mlp = ProjectionMLP(input_dim=input_dim, c_s=config.adapter_c_s, num_layers=config.adapter_projection_nlayers)
|
833 |
+
adapter_projection_layers.append(projection_mlp)
|
834 |
+
|
835 |
+
self.projection_mlps[key] = adapter_projection_layers
|
836 |
+
|
837 |
+
#if using a shared adapter, append an extra MLP to process the summed input
|
838 |
+
#not necessary if you have a separate adapter for each layer
|
839 |
+
#this one is always nonlinear and uses two layers
|
840 |
+
if (config.conditions_shared_adapter == True) and (len(config.encoding_dimensions.values()) >=2):
|
841 |
+
adapter_projection_layers = nn.ModuleList()
|
842 |
+
for i in range(n_projection_mlps):
|
843 |
+
projection_mlp = ProjectionMLP(input_dim=config.adapter_c_s, c_s=config.adapter_c_s, num_layers=2)
|
844 |
+
adapter_projection_layers.append(projection_mlp)
|
845 |
+
|
846 |
+
self.projection_mlps["combination"] = adapter_projection_layers
|
847 |
+
|
848 |
+
#initialize the adapter layers
|
849 |
+
self.adapter_layers = torch.nn.ModuleList()
|
850 |
+
if config.conditions_shared_adapter == False:
|
851 |
+
keys = config.encoding_dimensions.keys()
|
852 |
+
else:
|
853 |
+
keys = ["joint"]
|
854 |
+
n_parallel = len(keys)
|
855 |
+
|
856 |
+
for i in range(len(self.model.transformer.h)):
|
857 |
+
parallel_adapter_layer = ParallelAdapterLayer(
|
858 |
+
n_parallel=n_parallel,
|
859 |
+
c_s=config.adapter_c_s,
|
860 |
+
c_h=config.n_embd,
|
861 |
+
adapter_summation=config.adapter_summation,
|
862 |
+
weight_init=config.adapter_weight_init,
|
863 |
+
adapter_nlayers=config.adapter_nlayers,
|
864 |
+
)
|
865 |
+
adapter_dropout = torch.nn.Dropout(config.adapter_dropout)
|
866 |
+
self.adapter_layers.append(nn.ModuleList([parallel_adapter_layer, adapter_dropout]))
|
867 |
+
|
868 |
+
def prepare_inputs_for_generation(self, input_ids, condition_encodings: Dict[str, torch.tensor] = None, past=None, **kwargs):
|
869 |
+
"""
|
870 |
+
Overides the prepare inputs for generation function (HF compatible) to allow for the addition of adapter input.
|
871 |
+
"""
|
872 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
873 |
+
# only last token for inputs_ids if past is defined in kwargs
|
874 |
+
past = kwargs.get("past_key_values", past)
|
875 |
+
if past:
|
876 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
877 |
+
if token_type_ids is not None:
|
878 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
879 |
+
|
880 |
+
attention_mask = kwargs.get("attention_mask", None)
|
881 |
+
position_ids = kwargs.get("position_ids", None)
|
882 |
+
|
883 |
+
if attention_mask is not None and position_ids is None:
|
884 |
+
# create position_ids on the fly for batch generation
|
885 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
886 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
887 |
+
if past:
|
888 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
889 |
+
else:
|
890 |
+
position_ids = None
|
891 |
+
|
892 |
+
adapter_input = {}
|
893 |
+
for key, condition_encoding in condition_encodings.items():
|
894 |
+
if condition_encoding is not None:
|
895 |
+
single_adapter_input = condition_encoding.repeat(input_ids.shape[0], input_ids.shape[1], 1)
|
896 |
+
else:
|
897 |
+
single_adapter_input = None
|
898 |
+
adapter_input[key] = single_adapter_input
|
899 |
+
|
900 |
+
return {
|
901 |
+
"input_ids": input_ids,
|
902 |
+
"past_key_values": past,
|
903 |
+
"position_ids": position_ids,
|
904 |
+
"attention_mask": attention_mask,
|
905 |
+
"token_type_ids": token_type_ids,
|
906 |
+
"adapter_input": adapter_input,
|
907 |
+
}
|
908 |
+
|
909 |
+
@staticmethod
|
910 |
+
def _reorder_cache(past_key_values, beam_idx):
|
911 |
+
if isinstance(past_key_values, Cache):
|
912 |
+
return past_key_values.reorder_cache(beam_idx)
|
913 |
+
|
914 |
+
reordered_past = ()
|
915 |
+
for layer_past in past_key_values:
|
916 |
+
reordered_past += (
|
917 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
918 |
+
)
|
919 |
+
return DynamicCache.from_legacy_cache(reordered_past)
|
920 |
+
|
921 |
+
def forward(
|
922 |
+
self,
|
923 |
+
input_ids=None,
|
924 |
+
past_key_values=None,
|
925 |
+
attention_mask=None,
|
926 |
+
token_type_ids=None,
|
927 |
+
position_ids=None,
|
928 |
+
head_mask=None,
|
929 |
+
inputs_embeds=None,
|
930 |
+
labels=None,
|
931 |
+
use_cache=None,
|
932 |
+
output_attentions=None,
|
933 |
+
output_hidden_states=None,
|
934 |
+
return_dict=None,
|
935 |
+
adapter_input=None,
|
936 |
+
):
|
937 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
938 |
+
|
939 |
+
input_shape = input_ids.size()
|
940 |
+
|
941 |
+
input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.model.transformer.forward_prep(
|
942 |
+
input_ids=input_ids,
|
943 |
+
past_key_values=past_key_values,
|
944 |
+
attention_mask=attention_mask,
|
945 |
+
token_type_ids=token_type_ids,
|
946 |
+
position_ids=position_ids,
|
947 |
+
head_mask=head_mask,
|
948 |
+
inputs_embeds=inputs_embeds,
|
949 |
+
use_cache=use_cache,
|
950 |
+
output_attentions=output_attentions,
|
951 |
+
output_hidden_states=output_hidden_states,
|
952 |
+
return_dict=return_dict,
|
953 |
+
)
|
954 |
+
|
955 |
+
hidden_states = self.model.transformer.forward_embed(
|
956 |
+
input_ids=input_ids,
|
957 |
+
token_type_ids=token_type_ids,
|
958 |
+
inputs_embeds=inputs_embeds,
|
959 |
+
)
|
960 |
+
|
961 |
+
all_presents = () if use_cache else None
|
962 |
+
all_self_attentions = () if output_attentions else None
|
963 |
+
all_hidden_states = () if output_hidden_states else None
|
964 |
+
|
965 |
+
#project the condition to the dimension of the adapter
|
966 |
+
#if sharing a single projection layer
|
967 |
+
#else do nothing until we get into the loop
|
968 |
+
if self.config.adapter_shared_projection == True:
|
969 |
+
encoded_adapter_input = ()
|
970 |
+
#if you're sharing an adapter and doing joint conditioning
|
971 |
+
if len(adapter_input.keys()) >= 2 and self.config.conditions_shared_adapter == True:
|
972 |
+
summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
|
973 |
+
for key, single_adapter_input in adapter_input.items():
|
974 |
+
projected_adapter_input = self.projection_mlps[key][0](single_adapter_input)
|
975 |
+
summed_adapter_input += projected_adapter_input
|
976 |
+
|
977 |
+
#combine the inputs and pass through one
|
978 |
+
key = "combination"
|
979 |
+
summed_adapter_input = self.projection_mlps[key][0](summed_adapter_input)
|
980 |
+
encoded_adapter_input = (summed_adapter_input, )
|
981 |
+
|
982 |
+
#if you're not sharing an adapter (with or without multiple conditions)
|
983 |
+
else:
|
984 |
+
for key, value in adapter_input.items():
|
985 |
+
summed_adapter_input = self.projection_mlps[key][0](value)
|
986 |
+
encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )
|
987 |
+
encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)
|
988 |
+
|
989 |
+
for i in range(len(self.model.transformer.h)):
|
990 |
+
#if not sharing a projection layer
|
991 |
+
if self.config.adapter_shared_projection == False:
|
992 |
+
encoded_adapter_input = ()
|
993 |
+
#if you're sharing an adapter and doing joint conditioning
|
994 |
+
if len(adapter_input.keys()) >= 2 and self.config.conditions_shared_adapter == True:
|
995 |
+
summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
|
996 |
+
for key, single_adapter_input in adapter_input.items():
|
997 |
+
projected_adapter_input = self.projection_mlps[key][i](single_adapter_input)
|
998 |
+
encoded_adapter_input += projected_adapter_input
|
999 |
+
|
1000 |
+
#combine the inputs and pass through one more mlp
|
1001 |
+
key = "combination"
|
1002 |
+
summed_adapter_input = self.projection_mlps[key][i](summed_adapter_input)
|
1003 |
+
encoded_adapter_input = (summed_adapter_input, )
|
1004 |
+
|
1005 |
+
#if you're not sharing an adapter (with or without multiple conditions)
|
1006 |
+
else:
|
1007 |
+
for key, value in adapter_input.items():
|
1008 |
+
summed_adapter_input = self.projection_mlps[key][i](value)
|
1009 |
+
encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )
|
1010 |
+
encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)
|
1011 |
+
|
1012 |
+
if output_hidden_states:
|
1013 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
1014 |
+
|
1015 |
+
hidden_states, presents, self_attentions = self.model.transformer.forward_layer(
|
1016 |
+
hidden_states=hidden_states,
|
1017 |
+
layer_i=i,
|
1018 |
+
layer_past=past_key_values[i] if past_key_values[i] is not None else None,
|
1019 |
+
attention_mask=attention_mask,
|
1020 |
+
head_mask=head_mask,
|
1021 |
+
use_cache=use_cache,
|
1022 |
+
output_attentions=output_attentions,
|
1023 |
+
adapter_layer=self.adapter_layers[i][0],
|
1024 |
+
adapter_dropout=self.adapter_layers[i][1],
|
1025 |
+
adapter_input=encoded_adapter_input,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
if use_cache is True:
|
1029 |
+
all_presents = all_presents + presents
|
1030 |
+
if output_attentions:
|
1031 |
+
all_self_attentions = all_self_attentions + (self_attentions, )
|
1032 |
+
|
1033 |
+
hidden_states = self.model.transformer.ln_f(hidden_states)
|
1034 |
+
|
1035 |
+
output_shape = input_shape + (hidden_states.size(-1), )
|
1036 |
+
hidden_states = hidden_states.view(*output_shape)
|
1037 |
+
|
1038 |
+
if output_hidden_states:
|
1039 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
1040 |
+
|
1041 |
+
if not return_dict:
|
1042 |
+
return tuple(v for v in [
|
1043 |
+
hidden_states, all_presents, all_hidden_states,
|
1044 |
+
all_self_attentions
|
1045 |
+
] if v is not None)
|
1046 |
+
|
1047 |
+
transformer_outputs = BaseModelOutputWithPast(
|
1048 |
+
last_hidden_state=hidden_states,
|
1049 |
+
past_key_values=all_presents,
|
1050 |
+
hidden_states=all_hidden_states,
|
1051 |
+
attentions=all_self_attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
hidden_states = transformer_outputs[0]
|
1055 |
+
|
1056 |
+
# make sure sampling in fp16 works correctly and
|
1057 |
+
# compute loss in fp32 to match with mesh-tf version
|
1058 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
1059 |
+
lm_logits = self.model.lm_head(hidden_states).to(torch.float32)
|
1060 |
+
|
1061 |
+
loss = None
|
1062 |
+
all_losses = None
|
1063 |
+
if labels is not None:
|
1064 |
+
# Shift so that tokens < n predict n
|
1065 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1066 |
+
shift_labels = labels[..., 1:].contiguous()
|
1067 |
+
|
1068 |
+
#added this so that the loss of each sample is outputted
|
1069 |
+
loss_fct = CrossEntropyLoss(ignore_index=0, reduction='none')
|
1070 |
+
all_losses = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
1071 |
+
shift_labels.view(-1))
|
1072 |
+
all_losses = all_losses.to(hidden_states.dtype)
|
1073 |
+
|
1074 |
+
#still output the mean reduced loss
|
1075 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
1076 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
1077 |
+
shift_labels.view(-1))
|
1078 |
+
|
1079 |
+
if not return_dict:
|
1080 |
+
output = (lm_logits, ) + transformer_outputs[1:]
|
1081 |
+
return ((loss, ) + output) if loss is not None else output
|
1082 |
+
|
1083 |
+
return CausalLMOutputWithPast(
|
1084 |
+
loss=loss,
|
1085 |
+
all_losses=all_losses,
|
1086 |
+
logits=lm_logits,
|
1087 |
+
past_key_values=transformer_outputs.past_key_values,
|
1088 |
+
hidden_states=transformer_outputs.hidden_states,
|
1089 |
+
attentions=transformer_outputs.attentions,
|
1090 |
+
)
|