--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6249 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.941 | 1.0 | 113 | 1.8826 | 0.49 | | 1.1424 | 2.0 | 226 | 1.2356 | 0.68 | | 1.0566 | 3.0 | 339 | 0.9586 | 0.76 | | 0.6779 | 4.0 | 452 | 0.8902 | 0.74 | | 0.569 | 5.0 | 565 | 0.6360 | 0.85 | | 0.3615 | 6.0 | 678 | 0.6644 | 0.8 | | 0.2452 | 7.0 | 791 | 0.6032 | 0.8 | | 0.1148 | 8.0 | 904 | 0.6080 | 0.83 | | 0.1068 | 9.0 | 1017 | 0.6132 | 0.84 | | 0.0768 | 10.0 | 1130 | 0.6249 | 0.83 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1