File size: 5,340 Bytes
a418052 dfd64c8 9822383 dfd64c8 a418052 dfd64c8 ef545c8 3b40d1b dfd64c8 3b40d1b dfd64c8 a418052 6ea9a53 a418052 6ea9a53 dfd64c8 a418052 3b40d1b 5c9c5e5 a418052 dfd64c8 3b40d1b 5c9c5e5 3b40d1b 5c9c5e5 dfd64c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
tags:
- cross-encoder
datasets:
- lightonai/ms-marco-en-bge
- juanluisdb/triviaqa-bge-m3-logits
- juanluisdb/nq-bge-m3-logits
language:
- en
base_model:
- cross-encoder/ms-marco-MiniLM-L-6-v2
---
# Model Card for Model ID
This model is finetuned starting from the well-known [ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) using KL distillation techniques as described [here](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html),
using [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) as teacher
# Usage
## Usage with Transformers
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained("juanluisdb/MiniLM-L-6-rerank-m3")
tokenizer = AutoTokenizer.from_pretrained("juanluisdb/MiniLM-L-6-rerank-m3")
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
```
## Usage with SentenceTransformers
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder("juanluisdb/MiniLM-L-6-rerank-m3", max_length=512)
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
```
# Evaluation
### BEIR (NDCG@10)
I've run tests on different BEIR datasets. Cross Encoders rerank top100 BM25 results.
| | bm25 | jina-reranker-v1-turbo-en | bge-reranker-v2-m3 | mxbai-rerank-base-v1 | ms-marco-MiniLM-L-6-v2 | MiniLM-L-6-rerank-m3 |
|:---------------|-------:|----------------------------:|:---------------------|:-----------------------|-------------------------:|:------------------------------|
| nq* | 0.305 | 0.533 | **0.597** | 0.535 | 0.523 | 0.580 |
| fever* | 0.638 | 0.852 | 0.857 | 0.767 | 0.801 | **0.867** |
| fiqa | 0.238 | 0.336 | **0.397** | 0.382 | 0.349 | 0.364 |
| trec-covid | 0.589 | 0.774 | 0.784 | **0.830** | 0.741 | 0.738 |
| scidocs | 0.15 | 0.166 | 0.169 | **0.171** | 0.164 | 0.165 |
| scifact | 0.676 | 0.739 | 0.731 | 0.719 | 0.688 | **0.750** |
| nfcorpus | 0.318 | 0.353 | 0.336 | **0.353** | 0.349 | 0.350 |
| hotpotqa | 0.629 | 0.745 | **0.794** | 0.668 | 0.724 | 0.775 |
| dbpedia-entity | 0.319 | 0.421 | **0.445** | 0.416 | 0.445 | 0.444 |
| quora | 0.787 | 0.858 | 0.858 | 0.747 | 0.825 | **0.871** |
| climate-fever | 0.163 | 0.233 | **0.314** | 0.253 | 0.244 | 0.309 |
\* Training splits of NQ and Fever were used as part of the training data.
Comparison with [ablated model](https://huggingface.co/juanluisdb/MiniLM-L-6-rerank-m3-ablated) trained only on MSMarco:
| | ms-marco-MiniLM-L-6-v2 | MiniLM-L-6-rerank-m3-ablated |
|:---------------|-------------------------:|--------------------------------------:|
| nq | 0.5234 | **0.5412** |
| fever | 0.8007 | **0.8221** |
| fiqa | 0.349 | **0.3598** |
| trec-covid | **0.741** | 0.7331 |
| scidocs | **0.1638** | 0.163 |
| scifact | 0.688 | **0.7376** |
| nfcorpus | 0.3493 | **0.3495** |
| hotpotqa | 0.7235 | **0.7583** |
| dbpedia-entity | **0.4445** | 0.4382 |
| quora | 0.8251 | **0.8619** |
| climate-fever | 0.2438 | **0.2449** |
# Datasets Used
~900k queries with 32-way triplets were used from these datasets:
* MSMarco
* TriviaQA
* Natural Questions
* FEVER |