--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_ST_DA_1000 results: [] --- # BERT_ST_DA_1000 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1864 - Precision: 0.9653 - Recall: 0.9736 - F1: 0.9694 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 495 | 0.1375 | 0.9614 | 0.9662 | 0.9638 | 0.9590 | | 0.2452 | 2.0 | 990 | 0.1262 | 0.9652 | 0.9705 | 0.9679 | 0.9632 | | 0.0853 | 3.0 | 1485 | 0.1396 | 0.9638 | 0.9677 | 0.9657 | 0.9619 | | 0.0479 | 4.0 | 1980 | 0.1485 | 0.9637 | 0.9729 | 0.9683 | 0.9651 | | 0.0275 | 5.0 | 2475 | 0.1641 | 0.9633 | 0.9727 | 0.9680 | 0.9642 | | 0.0181 | 6.0 | 2970 | 0.1753 | 0.9641 | 0.9739 | 0.9689 | 0.9655 | | 0.0112 | 7.0 | 3465 | 0.1675 | 0.9659 | 0.9724 | 0.9691 | 0.9657 | | 0.0074 | 8.0 | 3960 | 0.1817 | 0.9650 | 0.9745 | 0.9697 | 0.9663 | | 0.0054 | 9.0 | 4455 | 0.1878 | 0.9652 | 0.9737 | 0.9694 | 0.9657 | | 0.0038 | 10.0 | 4950 | 0.1864 | 0.9653 | 0.9736 | 0.9694 | 0.9655 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1