Edit model card

BERT_ST_DA_100_v2

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2371
  • Precision: 0.9457
  • Recall: 0.9480
  • F1: 0.9469
  • Accuracy: 0.9446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 59 0.3489 0.9065 0.9194 0.9129 0.9085
No log 2.0 118 0.2883 0.9190 0.9267 0.9228 0.9180
No log 3.0 177 0.2505 0.9322 0.9403 0.9362 0.9330
No log 4.0 236 0.2300 0.9384 0.9446 0.9415 0.9384
No log 5.0 295 0.2305 0.9397 0.9435 0.9416 0.9386
No log 6.0 354 0.2332 0.9443 0.9482 0.9462 0.9438
No log 7.0 413 0.2341 0.9433 0.9468 0.9450 0.9429
No log 8.0 472 0.2364 0.9441 0.9474 0.9457 0.9430
0.1814 9.0 531 0.2339 0.9457 0.9472 0.9465 0.9439
0.1814 10.0 590 0.2371 0.9457 0.9480 0.9469 0.9446

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/BERT_ST_DA_100_v2

Finetuned
(2129)
this model