--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_ST_DA_1800 results: [] --- # BERT_ST_DA_1800 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1918 - Precision: 0.9710 - Recall: 0.9712 - F1: 0.9711 - Accuracy: 0.9675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1075 | 1.0 | 1050 | 0.1338 | 0.9633 | 0.9650 | 0.9641 | 0.9616 | | 0.0565 | 2.0 | 2100 | 0.1253 | 0.9661 | 0.9687 | 0.9674 | 0.9647 | | 0.0358 | 3.0 | 3150 | 0.1386 | 0.9691 | 0.9703 | 0.9697 | 0.9666 | | 0.0211 | 4.0 | 4200 | 0.1516 | 0.9701 | 0.9707 | 0.9704 | 0.9670 | | 0.0118 | 5.0 | 5250 | 0.1586 | 0.9697 | 0.9726 | 0.9711 | 0.9676 | | 0.0084 | 6.0 | 6300 | 0.1791 | 0.9685 | 0.9698 | 0.9691 | 0.9654 | | 0.0054 | 7.0 | 7350 | 0.1849 | 0.9692 | 0.9692 | 0.9692 | 0.9657 | | 0.0031 | 8.0 | 8400 | 0.1887 | 0.9690 | 0.9708 | 0.9699 | 0.9660 | | 0.0023 | 9.0 | 9450 | 0.1931 | 0.9705 | 0.9703 | 0.9704 | 0.9669 | | 0.0017 | 10.0 | 10500 | 0.1918 | 0.9710 | 0.9712 | 0.9711 | 0.9675 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1