judithrosell's picture
End of training
70424bc
|
raw
history blame
1.78 kB
metadata
base_model: medicalai/ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ClinicalBERT_BioNLP13CG_NER
    results: []

ClinicalBERT_BioNLP13CG_NER

This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3426
  • Precision: 0.7090
  • Recall: 0.6958
  • F1: 0.7023
  • Accuracy: 0.9104

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.99 95 0.4756 0.6077 0.5579 0.5817 0.8777
No log 2.0 191 0.3626 0.6999 0.6889 0.6944 0.9068
No log 2.98 285 0.3426 0.7090 0.6958 0.7023 0.9104

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0