--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT_BioNLP13CG_NER results: [] --- # ClinicalBERT_BioNLP13CG_NER This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3426 - Precision: 0.7090 - Recall: 0.6958 - F1: 0.7023 - Accuracy: 0.9104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.99 | 95 | 0.4756 | 0.6077 | 0.5579 | 0.5817 | 0.8777 | | No log | 2.0 | 191 | 0.3626 | 0.6999 | 0.6889 | 0.6944 | 0.9068 | | No log | 2.98 | 285 | 0.3426 | 0.7090 | 0.6958 | 0.7023 | 0.9104 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0