--- library_name: transformers license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ST_MAT results: [] --- # ST_MAT This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1551 - Precision: 0.8250 - Recall: 0.8333 - F1: 0.8291 - Accuracy: 0.9766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1259 | 1.0 | 569 | 0.0862 | 0.8117 | 0.7998 | 0.8057 | 0.9742 | | 0.0476 | 2.0 | 1138 | 0.0909 | 0.8065 | 0.8154 | 0.8109 | 0.9741 | | 0.0296 | 3.0 | 1707 | 0.1032 | 0.8039 | 0.8232 | 0.8134 | 0.9739 | | 0.0196 | 4.0 | 2276 | 0.1157 | 0.8054 | 0.8203 | 0.8128 | 0.9745 | | 0.0118 | 5.0 | 2845 | 0.1182 | 0.8300 | 0.8311 | 0.8305 | 0.9768 | | 0.0074 | 6.0 | 3414 | 0.1399 | 0.8204 | 0.8151 | 0.8178 | 0.9753 | | 0.0053 | 7.0 | 3983 | 0.1445 | 0.8334 | 0.8223 | 0.8278 | 0.9765 | | 0.0025 | 8.0 | 4552 | 0.1521 | 0.8218 | 0.8288 | 0.8253 | 0.9758 | | 0.0023 | 9.0 | 5121 | 0.1555 | 0.8215 | 0.8255 | 0.8235 | 0.9759 | | 0.0016 | 10.0 | 5690 | 0.1551 | 0.8250 | 0.8333 | 0.8291 | 0.9766 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1