Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- wikisql
|
5 |
+
widget:
|
6 |
+
- text: 'question: get people name with age equal 25 table: id, name, age'
|
7 |
+
---
|
8 |
+
|
9 |
+
# How to use
|
10 |
+
```python
|
11 |
+
from typing import List
|
12 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema")
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema")
|
16 |
+
|
17 |
+
def prepare_input(question: str, table: List[str]):
|
18 |
+
table_prefix = "table:"
|
19 |
+
question_prefix = "question:"
|
20 |
+
join_table = ",".join(table)
|
21 |
+
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
|
22 |
+
input_ids = tokenizer(inputs, max_length=512, return_tensors="pt").input_ids
|
23 |
+
return input_ids
|
24 |
+
|
25 |
+
def inference(question: str, table: List[str]) -> str:
|
26 |
+
input_data = prepare_input(question=question, table=table)
|
27 |
+
input_data = input_data.to(model.device)
|
28 |
+
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
|
29 |
+
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
|
30 |
+
return result
|
31 |
+
|
32 |
+
print(inference(question="get people name with age equal 25", table=["id", "name", "age"]))
|
33 |
+
```
|