File size: 7,817 Bytes
62e5c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from collections import deque
import itertools as it
import random
from threading import Thread
from typing import Literal, Optional, TypedDict

import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer,
)


###########
## Types ##
###########

class ChatMLMessage(TypedDict):
    name: Optional[str] = None
    role: Literal["assistant", "system", "user"]
    content: str

ChatML = list[ChatMLMessage]

# Example:
# [
#     {"role": "system", "name": "situation", "content": "I am talking to Diwank"},
#     {"role": "assistant", "name": "Samantha", "content": "Hey Diwank"},
#     {"role": "user", "name": "Diwank", "content": "Hey!"},
# ]

############
## Consts ##
############

AGENT_NAME: str = "Samantha"


###########
## Model ##
###########

# assistant_model_id = "julep-ai/samantha-7b-ds-03"
# assistant_model = AutoModelForCausalLM.from_pretrained(assistant_model_id, torch_dtype=torch.bfloat16, device_map="auto")

# Load model and tokenizer
model_id = "julep-ai/samantha-33b"
tokenizer_id = "julep-ai/samantha-33b"

print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, use_fast=False)

# warmup
model.generate(**tokenizer("Hello", return_tensors="pt").to(0), max_new_tokens=2)

print("Model loaded")


##############
## Generate ##
##############

class StopSequenceCriteria(StoppingCriteria):
    def __init__(
        self,
        tokenizer,
        stop: list[str],
        input_length,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        
        self.stop = stop
        self.tokenizer = tokenizer
        self.input_length = input_length

    def __call__(
        self,
        input_ids: torch.LongTensor,
        scores: torch.FloatTensor,
        **kwargs,
    ) -> bool:

        input_ids = input_ids.long().tolist()
        new_input_ids = [i[self.input_length:] for i in input_ids]
        
        for text in self.stop:
            generated_so_far = ""
            
            for input_id in new_input_ids:
                decoded = self.tokenizer.decode(input_id, skip_special_tokens=False)
                generated_so_far += decoded

                if text in generated_so_far:
                    return True

        return False


def message_role_to_prefix(message: ChatMLMessage) -> str:
    match message:
        case {"role": "system", "name": name, **rest}:
            return name
        case {"role": "user", "name": name, **rest}:
            return f"person ({name})" if name else "person"
        case {"role": "assistant", "name": name, **rest}:
            return f"me ({name})" if name else "me"


def to_prompt(
    messages: ChatML,
    bos: str = "<|section|>",
    eos: str = "<|endsection|>",
    suffix: str = f"\n<|section|>me ({AGENT_NAME})\n",
) -> str:
    # Input format:
    # [
    #     {"role": "system", "name": "situation", "content": "I am talking to Diwank"},
    #     {"role": "assistant", "name": "Samantha", "content": "Hey Diwank"},
    #     {"role": "user", "name": "Diwank", "content": "Hey!"},
    # ]
    
    # Output format:
    #
    # <|section|>situation
    # I am talking to Diwank<|endsection|>
    # <|section|>me (Samantha)
    # Hey Diwank<|endsection|>
    # <|section|>person (Diwank)
    # Hey<|endsection|>
    # <|section|>me (Samantha)\n
    

    prompt = "\n".join([
        f"{bos}{message_role_to_prefix(message)}\n{message['content']}{eos}"
        for message in messages
    ])

    return prompt + suffix


def groupwise(iterable, n):
    """Like itertools.pairwise but for n elements"""

    accum = deque((), n)
    count = 0
    
    for element in iterable:
        accum.append(element)
        count += 1
        
        if len(accum) == n:
            yield tuple(accum)

    if count < n:
        yield tuple(accum)


def wrap_iterator(iterator):
    for item in iterator:
        yield item

# TODO: Turn this into accepting regular expressions instead
def remove_stops(iterator, tokenizer, stop: list[str] = []):

    # If there's nothing to check yield everything as is
    if not stop:
        yield from iterator
        return

    # We need to look ahead n number of tokens so that,
    #   we can check if a stop sequence is coming up
    #   and not yield starting part of the stop sequence.

    # Look ahead by len of largest stop sequence
    look_ahead = max([
        len(tokenizer.encode(s, add_special_tokens=False))
        for s in stop
    ])

    # Group tokens into look_ahead groups
    for items in groupwise(iterator, look_ahead):

        # Check if group has a stop sequence
        joined = "".join(items).strip()
        has_stop_sequence = {s: joined.endswith(s) for s in stop}

        # If so, yield tokens minus stop sequence and return
        if any(has_stop_sequence.values()):
            # which stop sequence was found?
            offending_sequence = next(s for s, is_bad in has_stop_sequence.items() if is_bad)

            # remove that bit, yield and exit
            yield joined.split(offending_sequence)[0]
            return

        # Otherwise, keep yielding the first item in the group
        first, *_ = items
        
        if first.strip():
            yield first


def generate(
    messages: ChatML,
    stop: list[str] = [],
    timeout: int = 15,
    stream: bool = False,
    **kwargs
) -> TextIteratorStreamer | str:
    
    # Prepare input
    prompt = to_prompt(messages)
    inputs = tokenizer(prompt, return_tensors="pt").to(0)
    input_length = len(inputs["input_ids"].squeeze().tolist())

    # Stopping criteria
    stopping_criteria = (
        StoppingCriteriaList([StopSequenceCriteria(
            tokenizer=tokenizer,
            stop=stop,
            input_length=input_length,
        )])
        if stop else None
    )

    # Generation parameters
    generation_kwargs = {
        # defaults
        "max_new_tokens": 40, 
        "repetition_penalty": 1.02,
        "no_repeat_ngram_size": 4,
        "renormalize_logits": True,
        "temperature": 1.1,
        #
        # overrides
        **kwargs,
        #
        # required params
        "stopping_criteria": stopping_criteria,
        # "assistant_model": assistant_model,
        #
        # add inputs
        **inputs,
    }

    # If not streaming, run directly and return result
    if not stream:
        [output] = model.generate(**generation_kwargs)
        result = tokenizer.decode(output[input_length:], skip_special_tokens=False)

        # Remove the stop sequence at the end (needed)
        for s in stop:
            result = result.split(s)[0].strip()
        
        return result
    
    # If streaming, prepare streamer
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, timeout=timeout, skip_special_tokens=False)
    generation_kwargs["streamer"] = streamer

    # and start generating in new thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # stop sequence filter
    return remove_stops(streamer, tokenizer, stop)


if __name__ == "__main__":
    user_name: str = input("Enter your name")
    message: str = input("Enter your message")
    chatml = [
        ChatMLMessage(role="user", name=user_name, content=message),
    ]
    
    prompt = to_prompt(chatml)

    # LLM settings
    llm_settings = dict(
        max_new_tokens=80, 
        stop=["<|", "\n\n"],
        temperature=1.2,
    )

    # Generate streaming response
    response_stream = generate(
        chatml,
        stream=True,
        **llm_settings,
    )

    for m in response_stream:
        print(m, end=" ")