---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4895
- loss:OnlineContrastiveLoss
base_model: bowphs/SPhilBerta
widget:
- source_sentence: 'Query: Sed, ut ardentissimus poeta testatur, Quidquid a multis
    peccatur, inultum est: Multitudo peccantium impetrabiliorem fecit impiis veniam,
    ut qui redacti in laicos pristina sacrilegii sui debuerant scelera deplorare,
    nunc resupini in pontificali solio sedeant, et ructent nobis simulatae fidei nauseas,
    immo opertae perfidiae aperta compendia.'
  sentences:
  - 'Candidate: Capena grandi porta qua pluit gutta   Phrygiumque Matris Almo qua
    lavat ferrum,   Horatiorum qua viret sacer campus   Et qua pusilli fervet Herculis
    fanum,   Faustine, plena Bassus ibat in raeda,   Omnis beati copias trahens ruris.'
  - 'Candidate: Si qua videbuntur chartis tibi, lector, in istis   Sive obscura nimis
    sive latina parum,   Non meus est error: nocuit librarius illis,   Dum properat
    versus adnumerare tibi.'
  - 'Candidate: ecce, nefas visu, mediis altaribus anguis  exit et extinctis ignibus
    exta rapit,  consulitur Phoebus: sors est ita reddita:'
- source_sentence: 'Query: ille malum uirus serpentibus addidit atris praedarique
    lupos iussit, id est odium et inuidiam et dolum hominibus inseuit, ut tam essent
    quam serpentes uenenati, tam rapaces quam lupi.'
  sentences:
  - 'Candidate: quis negat?'
  - 'Candidate: quid moraris emori?'
  - 'Candidate: Et simul a medio media de parte secatur,'
- source_sentence: 'Query: scintilla uigoris paterni lucet in filio et similitudo
    morum per speculum carnis erumpens: ingentes animos angusto in pectore uersat.'
  sentences:
  - 'Candidate: quod si mihi nullum aliud esset officium in omni vita reliquum nisi
    ut erga duces ipsos et principes atque auctores salutis meae satis gratus iudicarer,
    tamen exiguum reliquae vitae tempus non modo ad referendam verum etiam ad commemorandam
    gratiam mihi relictum putarem.'
  - 'Candidate: uno enim maledicto bis a me patriam servatam esse concedis, semel
    cum id feci quod omnes non negent immortalitati, si fieri potest, mandandum, tu
    supplicio puniendum putasti, iterum cum tuum multorumque praeter te inflammatum
    in bonos omnis impetum meo corpore excepi, ne eam civitatem quam servassem inermis
    armatus in discrimen adducerem.'
  - 'Candidate: Ac siquem potuit spatiosa senectus  spectatorem operum multorum reddere,
    vixi  annos bis centum; nunc tertia vivitur aetas.'
- source_sentence: 'Query: si quid itaque in me potest esse consilii, si experto creditur,
    hoc primum moneo, hoc obtestor, ut sponsa Christi uinum fugiat pro ueneno.'
  sentences:
  - 'Candidate: Inscripta est basis indicatque nomen.'
  - 'Candidate: Erras, si tibi cunnus hic videtur,   Ad quem mentula pertinere desit.'
  - 'Candidate: Chthonius quoque Teleboasque  ense iacent nostro: ramum prior ille
    bifurcum  gesserat, hic iaculum; iaculo mihi vulnera fecit: '
- source_sentence: 'Query: Quia ergo insanivit Israel, et percussus fornicationis
    spiritu, incredibili furore bacchatus est, ideo non multo post tempore, sed dum
    propheto, dum spiritus hos regit artus, pascet eos Dominus quasi agnum in latitudine.'
  sentences:
  - 'Candidate: Haec omnia vidi inflammari,'
  - 'Candidate:  ut tuus amicus, Crasse, Granius non esse sextantis.'
  - 'Candidate: Te solum in bella secutus,  Post te fata sequar: neque enim sperare
    secunda  Fas mihi, nec liceat.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on bowphs/SPhilBerta
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: latin intertext
      type: latin_intertext
    metrics:
    - type: cosine_accuracy
      value: 0.9597902097902098
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.6651543378829956
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.7513227513227515
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6328521966934204
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.8352941176470589
      name: Cosine Precision
    - type: cosine_recall
      value: 0.6826923076923077
      name: Cosine Recall
    - type: cosine_ap
      value: 0.8119318372417907
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.7335872874320771
      name: Cosine Mcc
---
# SentenceTransformer based on bowphs/SPhilBerta
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bowphs/SPhilBerta](https://huggingface.co/bowphs/SPhilBerta). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bowphs/SPhilBerta](https://huggingface.co/bowphs/SPhilBerta) 
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("julian-schelb/SPhilBerta-latin-intertextuality-v1")
# Run inference
sentences = [
    'Query: Quia ergo insanivit Israel, et percussus fornicationis spiritu, incredibili furore bacchatus est, ideo non multo post tempore, sed dum propheto, dum spiritus hos regit artus, pascet eos Dominus quasi agnum in latitudine.',
    'Candidate: Te solum in bella secutus,  Post te fata sequar: neque enim sperare secunda  Fas mihi, nec liceat.',
    'Candidate:  ut tuus amicus, Crasse, Granius non esse sextantis.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `latin_intertext`
* Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.9598     |
| cosine_accuracy_threshold | 0.6652     |
| cosine_f1                 | 0.7513     |
| cosine_f1_threshold       | 0.6329     |
| cosine_precision          | 0.8353     |
| cosine_recall             | 0.6827     |
| **cosine_ap**             | **0.8119** |
| cosine_mcc                | 0.7336     |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,895 training samples
* Columns: query, match, and label
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | match                                                                             | label                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                            |
  | details | 
Query: quod et illustris poeta testatur dicens: sed fugit interea, fugit irreparabile tempus et iterum: Rhaebe, diu, res si qua diu mortalibus ulla est, uiximus.                        | Candidate: omnino si ego evolo mense Quintili in Graeciam, sunt omnia faciliora; sed cum sint ea tempora ut certi nihil esse possit quid honestum mihi sit, quid liceat, quid expediat, quaeso, da operam ut illum quam honestissime copiosissimeque tueamur.                                                                                                                            | 0 |
  | Query: Non solum in Ecclesia morantur oves, nec mundae tantum aves volitant; sed frumentum in agro seritur, interque nitentia culta Lappaeque et tribuli, et steriles dominantur avenae. | Candidate: atque hoc in loco, si facultas erit, exemplis uti oportebit, quibus in simili excusatione non sit ignotum, et contentione, magis illis ignoscendum fuisse, et deliberationis partibus, turpe aut inutile esse concedi eam rem, quae ab adversario commissa sit: permagnum esse et magno futurum detrimento, si ea res ab iis, qui potestatem habent vindicandi, neglecta sit. | 0 |
  | Query: adiuratus enim per eundem patrem et spes surgentis Iuli, nequaquam pepercit tums accensus et ira.                                                                                 | Candidate: factus olor niveis pendebat in aere pennis.                                                                                                                                                                                                                                                                                                                                   | 0 |
* Loss: [OnlineContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,144 evaluation samples
* Columns: query, match, and label
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | match                                                                              | label                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------|
  | type    | string                                                                             | string                                                                             | int                                            |
  | details | Query: qui uero pauperes sunt et tenui substantiola uidenturque sibi scioli, pomparum ferculis similes procedunt ad publicum, ut caninam exerceant facundiam.                  | Candidate: cogitat reliquas colonias obire.                                                                                        | 0 |
  | Query: nec uarios discet mentiri lana colores, ipse sed in pratis aries iam suaue rubenti- murice, iam croceo mutabit uellera luto, sponte sua sandyx pascentis uestiet agnos. | Candidate: loquitur ad voluntatem; quicquid denunciatum est, facit, assectatur, assidet, muneratur.                                | 0 |
  | Query: credite experto, quasi Christianus Christianis loquor: uenenata sunt illius dogmata, aliena a scripturis sanctis, uim scripturis facientia.                             | Candidate: ignoscunt mihi, revocant in consuetudinem pristinam te que, quod in ea permanseris, sapientiorem quam me dicunt fuisse. | 0 |
* Loss: [OnlineContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `warmup_steps`: 1958
- `prompts`: {'query': 'Query: ', 'match': 'Candidate: '}
#### All Hyperparameters