--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-mobile-eye-tracking-dataset-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9885350318471338 --- # vit-base-patch16-224-in21k-mobile-eye-tracking-dataset-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.024 | 0.99 | 73 | 0.0769 | 0.9809 | | 0.0236 | 1.99 | 147 | 0.1111 | 0.9745 | | 0.0172 | 3.0 | 221 | 0.0542 | 0.9898 | | 0.0114 | 4.0 | 295 | 0.0630 | 0.9885 | | 0.0051 | 4.99 | 368 | 0.0674 | 0.9860 | | 0.0044 | 5.99 | 442 | 0.0640 | 0.9885 | | 0.0037 | 7.0 | 516 | 0.0646 | 0.9885 | | 0.0034 | 8.0 | 590 | 0.0652 | 0.9885 | | 0.0032 | 8.99 | 663 | 0.0656 | 0.9885 | | 0.0032 | 9.9 | 730 | 0.0657 | 0.9885 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3