Julien Simon commited on
Commit
4e26629
·
1 Parent(s): 3a1a922

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.9546
23
- - Accuracy: 0.5788
24
- - F1: [0.62939855 0.4656164 0.50839092 0.5594581 0.73356926]
25
- - Precision: [0.62705122 0.47043962 0.49258728 0.58103179 0.7255 ]
26
- - Recall: [0.63176353 0.46089109 0.52524222 0.53942912 0.74182004]
27
 
28
  ## Model description
29
 
@@ -55,12 +55,12 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:|
58
- | 0.9611 | 1.0 | 2813 | 0.9546 | 0.5788 | [0.62939855 0.4656164 0.50839092 0.5594581 0.73356926] | [0.62705122 0.47043962 0.49258728 0.58103179 0.7255 ] | [0.63176353 0.46089109 0.52524222 0.53942912 0.74182004] |
59
 
60
 
61
  ### Framework versions
62
 
63
  - Transformers 4.28.1
64
- - Pytorch 2.0.0+cu117
65
  - Datasets 2.12.0
66
  - Tokenizers 0.13.3
 
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.9526
23
+ - Accuracy: 0.5793
24
+ - F1: [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605]
25
+ - Precision: [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ]
26
+ - Recall: [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624]
27
 
28
  ## Model description
29
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:|
58
+ | 0.9618 | 1.0 | 2813 | 0.9526 | 0.5793 | [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605] | [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ] | [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624] |
59
 
60
 
61
  ### Framework versions
62
 
63
  - Transformers 4.28.1
64
+ - Pytorch 1.13.1+cu117
65
  - Datasets 2.12.0
66
  - Tokenizers 0.13.3