Julien Simon commited on
Commit
9ceb12a
·
1 Parent(s): 2470e8c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -12
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.9526
23
- - Accuracy: 0.5793
24
- - F1: [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605]
25
- - Precision: [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ]
26
- - Recall: [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624]
27
 
28
  ## Model description
29
 
@@ -44,23 +44,19 @@ More information needed
44
  The following hyperparameters were used during training:
45
  - learning_rate: 5e-05
46
  - train_batch_size: 32
47
- - eval_batch_size: 64
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - num_epochs: 1
52
- - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:|
58
- | 0.9618 | 1.0 | 2813 | 0.9526 | 0.5793 | [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605] | [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ] | [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624] |
59
 
60
 
61
  ### Framework versions
62
 
63
- - Transformers 4.28.1
64
- - Pytorch 1.13.1+cu117
65
  - Datasets 2.12.0
66
  - Tokenizers 0.13.3
 
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.9524
23
+ - Accuracy: 0.579
24
+ - F1: [0.62880121 0.47009599 0.50419753 0.55847134 0.73663068]
25
+ - Precision: [0.63086233 0.46744983 0.4887506 0.58988159 0.72372965]
26
+ - Recall: [0.62675351 0.47277228 0.52065273 0.53023706 0.75 ]
27
 
28
  ## Model description
29
 
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 5e-05
46
  - train_batch_size: 32
47
+ - eval_batch_size: 8
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - num_epochs: 1
 
52
 
53
  ### Training results
54
 
 
 
 
55
 
56
 
57
  ### Framework versions
58
 
59
+ - Transformers 4.30.2
60
+ - Pytorch 2.0.1+cu117
61
  - Datasets 2.12.0
62
  - Tokenizers 0.13.3