--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall datasets: - amazon_us_reviews model-index: - name: distilbert-amazon-shoe-reviews results: - task: type: text-classification name: Text Classification dataset: type: amazon_us_reviews name: Amazon US reviews split: Shoes metrics: - type: accuracy value: 0.6819221967963387 name: Accuracy --- # distilbert-amazon-shoe-reviews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9536 - Accuracy: 0.5767 - F1: [0.62380713 0.45806452 0.5077951 0.56106774 0.73541247] - Precision: [0.62537764 0.45920398 0.49326923 0.58508403 0.72376238] - Recall: [0.62224449 0.45693069 0.52320245 0.53894533 0.74744376] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:| | 0.9704 | 1.0 | 2813 | 0.9536 | 0.5767 | [0.62380713 0.45806452 0.5077951 0.56106774 0.73541247] | [0.62537764 0.45920398 0.49326923 0.58508403 0.72376238] | [0.62224449 0.45693069 0.52320245 0.53894533 0.74744376] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1