--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- # whisper-base-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7883 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2085 | 1.0 | 113 | 1.1946 | 0.63 | | 0.7358 | 2.0 | 226 | 0.7745 | 0.72 | | 0.5596 | 3.0 | 339 | 0.4850 | 0.88 | | 0.1965 | 4.0 | 452 | 0.6614 | 0.81 | | 0.013 | 5.0 | 565 | 0.7528 | 0.86 | | 0.1476 | 6.0 | 678 | 0.5289 | 0.9 | | 0.0542 | 7.0 | 791 | 0.7080 | 0.88 | | 0.0018 | 8.0 | 904 | 0.7699 | 0.87 | | 0.0016 | 9.0 | 1017 | 0.8014 | 0.88 | | 0.0015 | 10.0 | 1130 | 0.7883 | 0.89 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1