File size: 81,017 Bytes
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13af955
6fa4eec
13af955
 
 
a4a6c30
6fa4eec
 
 
 
 
 
13af955
6fa4eec
 
 
 
 
 
 
 
 
 
 
13af955
6fa4eec
13af955
6fa4eec
 
a4a6c30
6fa4eec
 
 
a4a6c30
13af955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13af955
 
 
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
6fa4eec
13af955
 
 
 
 
 
 
 
 
 
 
6fa4eec
 
 
 
 
 
 
13af955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
 
 
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
6fa4eec
441d2c3
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
 
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
13af955
 
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa4eec
a4a6c30
6fa4eec
a4a6c30
 
 
 
 
 
6fa4eec
a4a6c30
 
 
 
 
 
 
441d2c3
13af955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a6c30
 
 
 
 
 
 
 
 
6fa4eec
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa4eec
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa4eec
a4a6c30
 
 
6fa4eec
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa4eec
 
 
a4a6c30
6fa4eec
 
 
 
a4a6c30
6fa4eec
 
a4a6c30
6fa4eec
 
 
 
 
a4a6c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441d2c3
a4a6c30
 
 
 
 
 
 
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13af955
6fa4eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# modified from https://github.com/AUTOMATIC1111/stable-diffusion-webui
# Here is the AGPL-3.0 license https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/LICENSE.txt

import copy
import inspect
import os
import os.path
import shutil
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union

import paddle
import paddle.nn as nn
import PIL
import PIL.Image
from huggingface_hub.file_download import _request_wrapper, hf_raise_for_status

from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from ppdiffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ppdiffusers.pipelines.pipeline_utils import DiffusionPipeline
from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from ppdiffusers.pipelines.stable_diffusion.safety_checker import (
    StableDiffusionSafetyChecker,
)
from ppdiffusers.schedulers import KarrasDiffusionSchedulers
from ppdiffusers.utils import (
    PIL_INTERPOLATION,
    PPDIFFUSERS_CACHE,
    logging,
    ppdiffusers_url_download,
    randn_tensor,
    safetensors_load,
    smart_load,
    torch_load,
)


def get_civitai_download_url(display_url, url_prefix="https://civitai.com"):
    if "api/download" in display_url:
        return display_url
    import bs4
    import requests

    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE"
    }
    r = requests.get(display_url, headers=headers)
    soup = bs4.BeautifulSoup(r.text, "lxml")
    download_url = None
    for a in soup.find_all("a", href=True):
        if "Download" in str(a):
            download_url = url_prefix + a["href"].split("?")[0]
            break
    return download_url


def http_file_name(
    url: str,
    *,
    proxies=None,
    headers: Optional[Dict[str, str]] = None,
    timeout=10.0,
    max_retries=0,
):
    """
    Get a remote file name.
    """
    headers = copy.deepcopy(headers) or {}
    r = _request_wrapper(
        method="GET",
        url=url,
        stream=True,
        proxies=proxies,
        headers=headers,
        timeout=timeout,
        max_retries=max_retries,
    )
    hf_raise_for_status(r)
    displayed_name = url
    content_disposition = r.headers.get("Content-Disposition")
    if content_disposition is not None and "filename=" in content_disposition:
        # Means file is on CDN
        displayed_name = content_disposition.split("filename=")[-1]
    return displayed_name


@paddle.no_grad()
def load_lora(
    pipeline,
    state_dict: dict,
    LORA_PREFIX_UNET: str = "lora_unet",
    LORA_PREFIX_TEXT_ENCODER: str = "lora_te",
    ratio: float = 1.0,
):
    ratio = float(ratio)
    visited = []
    for key in state_dict:
        if ".alpha" in key or ".lora_up" in key or key in visited:
            continue

        if "text" in key:
            tmp_layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
            hf_to_ppnlp = {
                "encoder": "transformer",
                "fc1": "linear1",
                "fc2": "linear2",
            }
            layer_infos = []
            for layer_info in tmp_layer_infos:
                if layer_info == "mlp":
                    continue
                layer_infos.append(hf_to_ppnlp.get(layer_info, layer_info))
            curr_layer: paddle.nn.Linear = pipeline.text_encoder
        else:
            layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
            curr_layer: paddle.nn.Linear = pipeline.unet

        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                if temp_name == "to":
                    raise ValueError()
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += "_" + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        triplet_keys = [key, key.replace("lora_down", "lora_up"), key.replace("lora_down.weight", "alpha")]
        dtype: paddle.dtype = curr_layer.weight.dtype
        weight_down: paddle.Tensor = state_dict[triplet_keys[0]].cast(dtype)
        weight_up: paddle.Tensor = state_dict[triplet_keys[1]].cast(dtype)
        rank: float = float(weight_down.shape[0])
        if triplet_keys[2] in state_dict:
            alpha: float = state_dict[triplet_keys[2]].cast(dtype).item()
            scale: float = alpha / rank
        else:
            scale = 1.0

        if not hasattr(curr_layer, "backup_weights"):
            curr_layer.backup_weights = curr_layer.weight.clone()

        if len(weight_down.shape) == 4:
            if weight_down.shape[2:4] == [1, 1]:
                # conv2d 1x1
                curr_layer.weight.copy_(
                    curr_layer.weight
                    + ratio
                    * paddle.matmul(weight_up.squeeze([-1, -2]), weight_down.squeeze([-1, -2])).unsqueeze([-1, -2])
                    * scale,
                    True,
                )
            else:
                # conv2d 3x3
                curr_layer.weight.copy_(
                    curr_layer.weight
                    + ratio
                    * paddle.nn.functional.conv2d(weight_down.transpose([1, 0, 2, 3]), weight_up).transpose(
                        [1, 0, 2, 3]
                    )
                    * scale,
                    True,
                )
        else:
            # linear
            curr_layer.weight.copy_(curr_layer.weight + ratio * paddle.matmul(weight_up, weight_down).T * scale, True)

        # update visited list
        visited.extend(triplet_keys)
    return pipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class WebUIStableDiffusionControlNetPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        controlnet ([`ControlNetModel`]):
            Provides additional conditioning to the unet during the denoising process.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    _optional_components = ["safety_checker", "feature_extractor"]
    enable_emphasis = True
    comma_padding_backtrack = 20

    LORA_DIR = os.path.join(PPDIFFUSERS_CACHE, "lora")
    TI_DIR = os.path.join(PPDIFFUSERS_CACHE, "textual_inversion")

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: ControlNetModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                f"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

        # custom data
        clip_model = FrozenCLIPEmbedder(text_encoder, tokenizer)
        self.sj = StableDiffusionModelHijack(clip_model)
        self.orginal_scheduler_config = self.scheduler.config
        self.supported_scheduler = [
            "pndm",
            "lms",
            "euler",
            "euler-ancestral",
            "dpm-multi",
            "dpm-single",
            "unipc-multi",
            "ddim",
            "ddpm",
            "deis-multi",
            "heun",
            "kdpm2-ancestral",
            "kdpm2",
        ]
        self.weights_has_changed = False

        # register_state_dict_hook to fix text_encoder, when we save_pretrained text model.
        def map_to(state_dict, *args, **kwargs):
            if "text_model.token_embedding.wrapped.weight" in state_dict:
                state_dict["text_model.token_embedding.weight"] = state_dict.pop(
                    "text_model.token_embedding.wrapped.weight"
                )
            return state_dict

        self.text_encoder.register_state_dict_hook(map_to)

    def add_ti_embedding_dir(self, embeddings_dir=None):
        self.sj.embedding_db.add_embedding_dir(embeddings_dir)
        self.sj.embedding_db.load_textual_inversion_embeddings()

    def clear_ti_embedding(self):
        self.sj.embedding_db.clear_embedding_dirs()
        self.sj.embedding_db.load_textual_inversion_embeddings(True)

    def download_civitai_lora_file(self, url):
        if os.path.isfile(url):
            dst = os.path.join(self.LORA_DIR, os.path.basename(url))
            shutil.copyfile(url, dst)
            return dst

        download_url = get_civitai_download_url(url) or url
        file_path = ppdiffusers_url_download(
            download_url, cache_dir=self.LORA_DIR, filename=http_file_name(download_url).strip('"')
        )
        return file_path

    def download_civitai_ti_file(self, url):
        if os.path.isfile(url):
            dst = os.path.join(self.TI_DIR, os.path.basename(url))
            shutil.copyfile(url, dst)
            return dst

        download_url = get_civitai_download_url(url) or url
        file_path = ppdiffusers_url_download(
            download_url, cache_dir=self.TI_DIR, filename=http_file_name(download_url).strip('"')
        )
        return file_path

    def change_scheduler(self, scheduler_type="ddim"):
        self.switch_scheduler(scheduler_type)

    def switch_scheduler(self, scheduler_type="ddim"):
        scheduler_type = scheduler_type.lower()
        from ppdiffusers import (
            DDIMScheduler,
            DDPMScheduler,
            DEISMultistepScheduler,
            DPMSolverMultistepScheduler,
            DPMSolverSinglestepScheduler,
            EulerAncestralDiscreteScheduler,
            EulerDiscreteScheduler,
            HeunDiscreteScheduler,
            KDPM2AncestralDiscreteScheduler,
            KDPM2DiscreteScheduler,
            LMSDiscreteScheduler,
            PNDMScheduler,
            UniPCMultistepScheduler,
        )

        if scheduler_type == "pndm":
            scheduler = PNDMScheduler.from_config(self.orginal_scheduler_config, skip_prk_steps=True)
        elif scheduler_type == "lms":
            scheduler = LMSDiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "heun":
            scheduler = HeunDiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "euler":
            scheduler = EulerDiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "euler-ancestral":
            scheduler = EulerAncestralDiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "dpm-multi":
            scheduler = DPMSolverMultistepScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "dpm-single":
            scheduler = DPMSolverSinglestepScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "kdpm2-ancestral":
            scheduler = KDPM2AncestralDiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "kdpm2":
            scheduler = KDPM2DiscreteScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "unipc-multi":
            scheduler = UniPCMultistepScheduler.from_config(self.orginal_scheduler_config)
        elif scheduler_type == "ddim":
            scheduler = DDIMScheduler.from_config(
                self.orginal_scheduler_config,
                steps_offset=1,
                clip_sample=False,
                set_alpha_to_one=False,
            )
        elif scheduler_type == "ddpm":
            scheduler = DDPMScheduler.from_config(
                self.orginal_scheduler_config,
            )
        elif scheduler_type == "deis-multi":
            scheduler = DEISMultistepScheduler.from_config(
                self.orginal_scheduler_config,
            )
        else:
            raise ValueError(
                f"Scheduler of type {scheduler_type} doesn't exist! Please choose in {self.supported_scheduler}!"
            )
        self.scheduler = scheduler

    @paddle.no_grad()
    def _encode_prompt(
        self,
        prompt: str,
        do_classifier_free_guidance: float = 7.5,
        negative_prompt: str = None,
        num_inference_steps: int = 50,
    ):
        if do_classifier_free_guidance:
            assert isinstance(negative_prompt, str)
            negative_prompt = [negative_prompt]
            uc = get_learned_conditioning(self.sj.clip, negative_prompt, num_inference_steps)
        else:
            uc = None

        c = get_multicond_learned_conditioning(self.sj.clip, prompt, num_inference_steps)
        return c, uc

    def run_safety_checker(self, image, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
            )
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clip(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        image,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        controlnet_conditioning_scale=1.0,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and not isinstance(prompt, str):
            raise ValueError(f"`prompt` has to be of type `str` but is {type(prompt)}")

        if negative_prompt is not None and not isinstance(negative_prompt, str):
            raise ValueError(f"`negative_prompt` has to be of type `str` but is {type(negative_prompt)}")

        # Check `image`

        if isinstance(self.controlnet, ControlNetModel):
            self.check_image(image, prompt)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if isinstance(self.controlnet, ControlNetModel):
            if not isinstance(controlnet_conditioning_scale, (float, list, tuple)):
                raise TypeError(
                    "For single controlnet: `controlnet_conditioning_scale` must be type `float, list(float) or tuple(float)`."
                )

    def check_image(self, image, prompt):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, paddle.Tensor)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], paddle.Tensor)

        if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
            raise TypeError(
                "image must be one of PIL image, paddle tensor, list of PIL images, or list of paddle tensors"
            )

        if image_is_pil:
            image_batch_size = 1
        elif image_is_tensor:
            image_batch_size = image.shape[0]
        elif image_is_pil_list:
            image_batch_size = len(image)
        elif image_is_tensor_list:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_image(self, image, width, height, dtype):
        if not isinstance(image, paddle.Tensor):
            if isinstance(image, PIL.Image.Image):
                image = [image]

            if isinstance(image[0], PIL.Image.Image):
                images = []
                for image_ in image:
                    image_ = image_.convert("RGB")
                    image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
                    image_ = np.array(image_)
                    image_ = image_[None, :]
                    images.append(image_)

                image = np.concatenate(images, axis=0)
                image = np.array(image).astype(np.float32) / 255.0
                image = image.transpose(0, 3, 1, 2)
                image = paddle.to_tensor(image)
            elif isinstance(image[0], paddle.Tensor):
                image = paddle.concat(image, axis=0)

        image = image.cast(dtype)
        return image

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def _default_height_width(self, height, width, image):
        while isinstance(image, list):
            image = image[0]

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, paddle.Tensor):
                height = image.shape[3]

            height = (height // 8) * 8  # round down to nearest multiple of 8

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, paddle.Tensor):
                width = image.shape[2]

            width = (width // 8) * 8  # round down to nearest multiple of 8

        return height, width

    @paddle.no_grad()
    def __call__(
        self,
        prompt: str = None,
        image: PIL.Image.Image = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: str = None,
        eta: float = 0.0,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        latents: Optional[paddle.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: int = 1,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        enable_lora: bool = True,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            image (`paddle.Tensor`, `PIL.Image.Image`):
                The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
                the type is specified as `paddle.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
                also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
                height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
                specified in init, images must be passed as a list such that each element of the list can be correctly
                batched for input to a single controlnet.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`paddle.Generator` or `List[paddle.Generator]`, *optional*):
                One or a list of paddle generator(s) to make generation deterministic.
            latents (`paddle.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            clip_skip (`int`, *optional*, defaults to 1):
                CLIP_stop_at_last_layers, if clip_skip <= 1, we will use the last_hidden_state from text_encoder.
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
                corresponding scale as a list.
        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        self.add_ti_embedding_dir(self.TI_DIR)

        try:
            # 0. Default height and width to unet
            height, width = self._default_height_width(height, width, image)

            # 1. Check inputs. Raise error if not correct
            self.check_inputs(
                prompt,
                image,
                height,
                width,
                callback_steps,
                negative_prompt,
                controlnet_conditioning_scale,
            )

            batch_size = 1

            image = self.prepare_image(
                image=image,
                width=width,
                height=height,
                dtype=self.controlnet.dtype,
            )

            # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
            # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
            # corresponds to doing no classifier free guidance.
            do_classifier_free_guidance = guidance_scale > 1.0

            prompts, extra_network_data = parse_prompts([prompt])

            if enable_lora and self.LORA_DIR is not None:
                if os.path.exists(self.LORA_DIR):
                    lora_mapping = {p.stem: p.absolute() for p in Path(self.LORA_DIR).glob("*.safetensors")}
                    for params in extra_network_data["lora"]:
                        assert len(params.items) > 0
                        name = params.items[0]
                        if name in lora_mapping:
                            ratio = float(params.items[1]) if len(params.items) > 1 else 1.0
                            lora_state_dict = smart_load(lora_mapping[name], map_location=paddle.get_device())
                            self.weights_has_changed = True
                            load_lora(self, state_dict=lora_state_dict, ratio=ratio)
                            del lora_state_dict
                        else:
                            print(f"We can't find lora weight: {name}! Please make sure that exists!")
                else:
                    if len(extra_network_data["lora"]) > 0:
                        print(f"{self.LORA_DIR} not exists, so we cant load loras!")

            self.sj.clip.CLIP_stop_at_last_layers = clip_skip
            # 3. Encode input prompt
            prompt_embeds, negative_prompt_embeds = self._encode_prompt(
                prompts,
                do_classifier_free_guidance,
                negative_prompt,
                num_inference_steps=num_inference_steps,
            )

            # 4. Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps)
            timesteps = self.scheduler.timesteps

            # 5. Prepare latent variables
            num_channels_latents = self.unet.in_channels
            latents = self.prepare_latents(
                batch_size,
                num_channels_latents,
                height,
                width,
                self.unet.dtype,
                generator,
                latents,
            )

            # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # 7. Denoising loop
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    step = i // self.scheduler.order
                    do_batch = False
                    conds_list, cond_tensor = reconstruct_multicond_batch(prompt_embeds, step)
                    try:
                        weight = conds_list[0][0][1]
                    except Exception:
                        weight = 1.0
                    if do_classifier_free_guidance:
                        uncond_tensor = reconstruct_cond_batch(negative_prompt_embeds, step)
                        do_batch = cond_tensor.shape[1] == uncond_tensor.shape[1]

                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = paddle.concat([latents] * 2) if do_batch else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    if do_batch:
                        encoder_hidden_states = paddle.concat([uncond_tensor, cond_tensor])
                        down_block_res_samples, mid_block_res_sample = self.controlnet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=encoder_hidden_states,
                            controlnet_cond=paddle.concat([image, image]),
                            conditioning_scale=controlnet_conditioning_scale,
                            return_dict=False,
                        )
                        noise_pred = self.unet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=encoder_hidden_states,
                            cross_attention_kwargs=cross_attention_kwargs,
                            down_block_additional_residuals=down_block_res_samples,
                            mid_block_additional_residual=mid_block_res_sample,
                        ).sample
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + weight * guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                        )
                    else:
                        down_block_res_samples, mid_block_res_sample = self.controlnet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=cond_tensor,
                            controlnet_cond=image,
                            conditioning_scale=controlnet_conditioning_scale,
                            return_dict=False,
                        )
                        noise_pred = self.unet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=cond_tensor,
                            cross_attention_kwargs=cross_attention_kwargs,
                            down_block_additional_residuals=down_block_res_samples,
                            mid_block_additional_residual=mid_block_res_sample,
                        ).sample

                        if do_classifier_free_guidance:
                            down_block_res_samples, mid_block_res_sample = self.controlnet(
                                latent_model_input,
                                t,
                                encoder_hidden_states=uncond_tensor,
                                controlnet_cond=image,
                                conditioning_scale=controlnet_conditioning_scale,
                                return_dict=False,
                            )
                            noise_pred_uncond = self.unet(
                                latent_model_input,
                                t,
                                encoder_hidden_states=uncond_tensor,
                                cross_attention_kwargs=cross_attention_kwargs,
                                down_block_additional_residuals=down_block_res_samples,
                                mid_block_additional_residual=mid_block_res_sample,
                            ).sample
                            noise_pred = noise_pred_uncond + weight * guidance_scale * (noise_pred - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

            if output_type == "latent":
                image = latents
                has_nsfw_concept = None
            elif output_type == "pil":
                # 8. Post-processing
                image = self.decode_latents(latents)

                # 9. Run safety checker
                image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype)

                # 10. Convert to PIL
                image = self.numpy_to_pil(image)
            else:
                # 8. Post-processing
                image = self.decode_latents(latents)

                # 9. Run safety checker
                image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype)

            if not return_dict:
                return (image, has_nsfw_concept)

            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
        except Exception as e:
            raise ValueError(e)
        finally:
            if enable_lora and self.weights_has_changed:
                for sub_layer in self.text_encoder.sublayers(include_self=True):
                    if hasattr(sub_layer, "backup_weights"):
                        sub_layer.weight.copy_(sub_layer.backup_weights, True)
                for sub_layer in self.unet.sublayers(include_self=True):
                    if hasattr(sub_layer, "backup_weights"):
                        sub_layer.weight.copy_(sub_layer.backup_weights, True)
                self.weights_has_changed = False


# clip.py
import math
from collections import namedtuple


class PromptChunk:
    """
    This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
    If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
    Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
    so just 75 tokens from prompt.
    """

    def __init__(self):
        self.tokens = []
        self.multipliers = []
        self.fixes = []


PromptChunkFix = namedtuple("PromptChunkFix", ["offset", "embedding"])
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""


class FrozenCLIPEmbedder(nn.Layer):
    """Uses the CLIP transformer encoder for text (from huggingface)"""

    LAYERS = ["last", "pooled", "hidden"]

    def __init__(self, text_encoder, tokenizer, freeze=True, layer="last", layer_idx=None):
        super().__init__()
        assert layer in self.LAYERS
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = layer_idx
        if layer == "hidden":
            assert layer_idx is not None
            assert 0 <= abs(layer_idx) <= 12

    def freeze(self):
        self.text_encoder.eval()
        for param in self.parameters():
            param.stop_gradient = False

    def forward(self, text):
        batch_encoding = self.tokenizer(
            text,
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            padding="max_length",
            return_tensors="pd",
        )
        tokens = batch_encoding["input_ids"]
        outputs = self.text_encoder(input_ids=tokens, output_hidden_states=self.layer == "hidden", return_dict=True)
        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
        return z

    def encode(self, text):
        return self(text)


class FrozenCLIPEmbedderWithCustomWordsBase(nn.Layer):
    """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
    have unlimited prompt length and assign weights to tokens in prompt.
    """

    def __init__(self, wrapped, hijack):
        super().__init__()

        self.wrapped = wrapped
        """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
        depending on model."""

        self.hijack = hijack
        self.chunk_length = 75

    def empty_chunk(self):
        """creates an empty PromptChunk and returns it"""

        chunk = PromptChunk()
        chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
        chunk.multipliers = [1.0] * (self.chunk_length + 2)
        return chunk

    def get_target_prompt_token_count(self, token_count):
        """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""

        return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length

    def tokenize(self, texts):
        """Converts a batch of texts into a batch of token ids"""

        raise NotImplementedError

    def encode_with_text_encoder(self, tokens):
        """
        converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens;
        All python lists with tokens are assumed to have same length, usually 77.
        if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
        model - can be 768 and 1024.
        Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
        """

        raise NotImplementedError

    def encode_embedding_init_text(self, init_text, nvpt):
        """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
        transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""

        raise NotImplementedError

    def tokenize_line(self, line):
        """
        this transforms a single prompt into a list of PromptChunk objects - as many as needed to
        represent the prompt.
        Returns the list and the total number of tokens in the prompt.
        """

        if WebUIStableDiffusionControlNetPipeline.enable_emphasis:
            parsed = parse_prompt_attention(line)
        else:
            parsed = [[line, 1.0]]

        tokenized = self.tokenize([text for text, _ in parsed])

        chunks = []
        chunk = PromptChunk()
        token_count = 0
        last_comma = -1

        def next_chunk(is_last=False):
            """puts current chunk into the list of results and produces the next one - empty;
            if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
            nonlocal token_count
            nonlocal last_comma
            nonlocal chunk

            if is_last:
                token_count += len(chunk.tokens)
            else:
                token_count += self.chunk_length

            to_add = self.chunk_length - len(chunk.tokens)
            if to_add > 0:
                chunk.tokens += [self.id_end] * to_add
                chunk.multipliers += [1.0] * to_add

            chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
            chunk.multipliers = [1.0] + chunk.multipliers + [1.0]

            last_comma = -1
            chunks.append(chunk)
            chunk = PromptChunk()

        for tokens, (text, weight) in zip(tokenized, parsed):
            if text == "BREAK" and weight == -1:
                next_chunk()
                continue

            position = 0
            while position < len(tokens):
                token = tokens[position]

                if token == self.comma_token:
                    last_comma = len(chunk.tokens)

                # this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
                # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
                elif (
                    WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack != 0
                    and len(chunk.tokens) == self.chunk_length
                    and last_comma != -1
                    and len(chunk.tokens) - last_comma
                    <= WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack
                ):
                    break_location = last_comma + 1

                    reloc_tokens = chunk.tokens[break_location:]
                    reloc_mults = chunk.multipliers[break_location:]

                    chunk.tokens = chunk.tokens[:break_location]
                    chunk.multipliers = chunk.multipliers[:break_location]

                    next_chunk()
                    chunk.tokens = reloc_tokens
                    chunk.multipliers = reloc_mults

                if len(chunk.tokens) == self.chunk_length:
                    next_chunk()

                embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(
                    tokens, position
                )
                if embedding is None:
                    chunk.tokens.append(token)
                    chunk.multipliers.append(weight)
                    position += 1
                    continue

                emb_len = int(embedding.vec.shape[0])
                if len(chunk.tokens) + emb_len > self.chunk_length:
                    next_chunk()

                chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))

                chunk.tokens += [0] * emb_len
                chunk.multipliers += [weight] * emb_len
                position += embedding_length_in_tokens

        if len(chunk.tokens) > 0 or len(chunks) == 0:
            next_chunk(is_last=True)

        return chunks, token_count

    def process_texts(self, texts):
        """
        Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
        length, in tokens, of all texts.
        """

        token_count = 0

        cache = {}
        batch_chunks = []
        for line in texts:
            if line in cache:
                chunks = cache[line]
            else:
                chunks, current_token_count = self.tokenize_line(line)
                token_count = max(current_token_count, token_count)

                cache[line] = chunks

            batch_chunks.append(chunks)

        return batch_chunks, token_count

    def forward(self, texts):
        """
        Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
        Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
        be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
        An example shape returned by this function can be: (2, 77, 768).
        Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
        is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
        """

        batch_chunks, token_count = self.process_texts(texts)

        used_embeddings = {}
        chunk_count = max([len(x) for x in batch_chunks])

        zs = []
        for i in range(chunk_count):
            batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]

            tokens = [x.tokens for x in batch_chunk]
            multipliers = [x.multipliers for x in batch_chunk]
            self.hijack.fixes = [x.fixes for x in batch_chunk]

            for fixes in self.hijack.fixes:
                for position, embedding in fixes:
                    used_embeddings[embedding.name] = embedding

            z = self.process_tokens(tokens, multipliers)
            zs.append(z)

        if len(used_embeddings) > 0:
            embeddings_list = ", ".join(
                [f"{name} [{embedding.checksum()}]" for name, embedding in used_embeddings.items()]
            )
            self.hijack.comments.append(f"Used embeddings: {embeddings_list}")

        return paddle.concat(zs, axis=1)

    def process_tokens(self, remade_batch_tokens, batch_multipliers):
        """
        sends one single prompt chunk to be encoded by transformers neural network.
        remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
        there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
        Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
        corresponds to one token.
        """
        tokens = paddle.to_tensor(remade_batch_tokens)

        # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
        if self.id_end != self.id_pad:
            for batch_pos in range(len(remade_batch_tokens)):
                index = remade_batch_tokens[batch_pos].index(self.id_end)
                tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad

        z = self.encode_with_text_encoder(tokens)

        # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
        batch_multipliers = paddle.to_tensor(batch_multipliers)
        original_mean = z.mean()
        z = z * batch_multipliers.reshape(
            batch_multipliers.shape
            + [
                1,
            ]
        ).expand(z.shape)
        new_mean = z.mean()
        z = z * (original_mean / new_mean)

        return z


class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
    def __init__(self, wrapped, hijack, CLIP_stop_at_last_layers=-1):
        super().__init__(wrapped, hijack)
        self.CLIP_stop_at_last_layers = CLIP_stop_at_last_layers
        self.tokenizer = wrapped.tokenizer

        vocab = self.tokenizer.get_vocab()

        self.comma_token = vocab.get(",</w>", None)

        self.token_mults = {}
        tokens_with_parens = [(k, v) for k, v in vocab.items() if "(" in k or ")" in k or "[" in k or "]" in k]
        for text, ident in tokens_with_parens:
            mult = 1.0
            for c in text:
                if c == "[":
                    mult /= 1.1
                if c == "]":
                    mult *= 1.1
                if c == "(":
                    mult *= 1.1
                if c == ")":
                    mult /= 1.1

            if mult != 1.0:
                self.token_mults[ident] = mult

        self.id_start = self.wrapped.tokenizer.bos_token_id
        self.id_end = self.wrapped.tokenizer.eos_token_id
        self.id_pad = self.id_end

    def tokenize(self, texts):
        tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]

        return tokenized

    def encode_with_text_encoder(self, tokens):
        output_hidden_states = self.CLIP_stop_at_last_layers > 1
        outputs = self.wrapped.text_encoder(
            input_ids=tokens, output_hidden_states=output_hidden_states, return_dict=True
        )

        if output_hidden_states:
            z = outputs.hidden_states[-self.CLIP_stop_at_last_layers]
            z = self.wrapped.text_encoder.text_model.ln_final(z)
        else:
            z = outputs.last_hidden_state

        return z

    def encode_embedding_init_text(self, init_text, nvpt):
        embedding_layer = self.wrapped.text_encoder.text_model
        ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pd", add_special_tokens=False)[
            "input_ids"
        ]
        embedded = embedding_layer.token_embedding.wrapped(ids).squeeze(0)

        return embedded


# extra_networks.py
import re
from collections import defaultdict


class ExtraNetworkParams:
    def __init__(self, items=None):
        self.items = items or []


re_extra_net = re.compile(r"<(\w+):([^>]+)>")


def parse_prompt(prompt):
    res = defaultdict(list)

    def found(m):
        name = m.group(1)
        args = m.group(2)

        res[name].append(ExtraNetworkParams(items=args.split(":")))

        return ""

    prompt = re.sub(re_extra_net, found, prompt)

    return prompt, res


def parse_prompts(prompts):
    res = []
    extra_data = None

    for prompt in prompts:
        updated_prompt, parsed_extra_data = parse_prompt(prompt)

        if extra_data is None:
            extra_data = parsed_extra_data

        res.append(updated_prompt)

    return res, extra_data


# image_embeddings.py

import base64
import json
import zlib

import numpy as np
from PIL import Image


class EmbeddingDecoder(json.JSONDecoder):
    def __init__(self, *args, **kwargs):
        json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)

    def object_hook(self, d):
        if "TORCHTENSOR" in d:
            return paddle.to_tensor(np.array(d["TORCHTENSOR"]))
        return d


def embedding_from_b64(data):
    d = base64.b64decode(data)
    return json.loads(d, cls=EmbeddingDecoder)


def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
    while True:
        seed = (a * seed + c) % m
        yield seed % 255


def xor_block(block):
    g = lcg()
    randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
    return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)


def crop_black(img, tol=0):
    mask = (img > tol).all(2)
    mask0, mask1 = mask.any(0), mask.any(1)
    col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax()
    row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax()
    return img[row_start:row_end, col_start:col_end]


def extract_image_data_embed(image):
    d = 3
    outarr = (
        crop_black(np.array(image.convert("RGB").getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8))
        & 0x0F
    )
    black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
    if black_cols[0].shape[0] < 2:
        print("No Image data blocks found.")
        return None

    data_block_lower = outarr[:, : black_cols[0].min(), :].astype(np.uint8)
    data_block_upper = outarr[:, black_cols[0].max() + 1 :, :].astype(np.uint8)

    data_block_lower = xor_block(data_block_lower)
    data_block_upper = xor_block(data_block_upper)

    data_block = (data_block_upper << 4) | (data_block_lower)
    data_block = data_block.flatten().tobytes()

    data = zlib.decompress(data_block)
    return json.loads(data, cls=EmbeddingDecoder)


# prompt_parser.py
import re
from collections import namedtuple
from typing import List

import lark

# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
# will be represented with prompt_schedule like this (assuming steps=100):
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
# [75, 'fantasy landscape with a lake and an oak in background masterful']
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']

schedule_parser = lark.Lark(
    r"""
!start: (prompt | /[][():]/+)*
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
!emphasized: "(" prompt ")"
        | "(" prompt ":" prompt ")"
        | "[" prompt "]"
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
alternate: "[" prompt ("|" prompt)+ "]"
WHITESPACE: /\s+/
plain: /([^\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
"""
)


def get_learned_conditioning_prompt_schedules(prompts, steps):
    """
    >>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
    >>> g("test")
    [[10, 'test']]
    >>> g("a [b:3]")
    [[3, 'a '], [10, 'a b']]
    >>> g("a [b: 3]")
    [[3, 'a '], [10, 'a b']]
    >>> g("a [[[b]]:2]")
    [[2, 'a '], [10, 'a [[b]]']]
    >>> g("[(a:2):3]")
    [[3, ''], [10, '(a:2)']]
    >>> g("a [b : c : 1] d")
    [[1, 'a b  d'], [10, 'a  c  d']]
    >>> g("a[b:[c:d:2]:1]e")
    [[1, 'abe'], [2, 'ace'], [10, 'ade']]
    >>> g("a [unbalanced")
    [[10, 'a [unbalanced']]
    >>> g("a [b:.5] c")
    [[5, 'a  c'], [10, 'a b c']]
    >>> g("a [{b|d{:.5] c")  # not handling this right now
    [[5, 'a  c'], [10, 'a {b|d{ c']]
    >>> g("((a][:b:c [d:3]")
    [[3, '((a][:b:c '], [10, '((a][:b:c d']]
    >>> g("[a|(b:1.1)]")
    [[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
    """

    def collect_steps(steps, tree):
        l = [steps]

        class CollectSteps(lark.Visitor):
            def scheduled(self, tree):
                tree.children[-1] = float(tree.children[-1])
                if tree.children[-1] < 1:
                    tree.children[-1] *= steps
                tree.children[-1] = min(steps, int(tree.children[-1]))
                l.append(tree.children[-1])

            def alternate(self, tree):
                l.extend(range(1, steps + 1))

        CollectSteps().visit(tree)
        return sorted(set(l))

    def at_step(step, tree):
        class AtStep(lark.Transformer):
            def scheduled(self, args):
                before, after, _, when = args
                yield before or () if step <= when else after

            def alternate(self, args):
                yield next(args[(step - 1) % len(args)])

            def start(self, args):
                def flatten(x):
                    if type(x) == str:
                        yield x
                    else:
                        for gen in x:
                            yield from flatten(gen)

                return "".join(flatten(args))

            def plain(self, args):
                yield args[0].value

            def __default__(self, data, children, meta):
                for child in children:
                    yield child

        return AtStep().transform(tree)

    def get_schedule(prompt):
        try:
            tree = schedule_parser.parse(prompt)
        except lark.exceptions.LarkError:
            if 0:
                import traceback

                traceback.print_exc()
            return [[steps, prompt]]
        return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]

    promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
    return [promptdict[prompt] for prompt in prompts]


ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])


def get_learned_conditioning(model, prompts, steps):
    """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
    and the sampling step at which this condition is to be replaced by the next one.

    Input:
    (model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)

    Output:
    [
        [
            ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886,  0.0229, -0.0523,  ..., -0.4901, -0.3066,  0.0674], ..., [ 0.3317, -0.5102, -0.4066,  ...,  0.4119, -0.7647, -1.0160]], device='cuda:0'))
        ],
        [
            ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886,  0.0229, -0.0522,  ..., -0.4901, -0.3067,  0.0673], ..., [-0.0192,  0.3867, -0.4644,  ...,  0.1135, -0.3696, -0.4625]], device='cuda:0')),
            ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886,  0.0229, -0.0522,  ..., -0.4901, -0.3067,  0.0673], ..., [-0.7352, -0.4356, -0.7888,  ...,  0.6994, -0.4312, -1.2593]], device='cuda:0'))
        ]
    ]
    """
    res = []

    prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
    cache = {}

    for prompt, prompt_schedule in zip(prompts, prompt_schedules):

        cached = cache.get(prompt, None)
        if cached is not None:
            res.append(cached)
            continue

        texts = [x[1] for x in prompt_schedule]
        conds = model(texts)

        cond_schedule = []
        for i, (end_at_step, text) in enumerate(prompt_schedule):
            cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))

        cache[prompt] = cond_schedule
        res.append(cond_schedule)

    return res


re_AND = re.compile(r"\bAND\b")
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")


def get_multicond_prompt_list(prompts):
    res_indexes = []

    prompt_flat_list = []
    prompt_indexes = {}

    for prompt in prompts:
        subprompts = re_AND.split(prompt)

        indexes = []
        for subprompt in subprompts:
            match = re_weight.search(subprompt)

            text, weight = match.groups() if match is not None else (subprompt, 1.0)

            weight = float(weight) if weight is not None else 1.0

            index = prompt_indexes.get(text, None)
            if index is None:
                index = len(prompt_flat_list)
                prompt_flat_list.append(text)
                prompt_indexes[text] = index

            indexes.append((index, weight))

        res_indexes.append(indexes)

    return res_indexes, prompt_flat_list, prompt_indexes


class ComposableScheduledPromptConditioning:
    def __init__(self, schedules, weight=1.0):
        self.schedules: List[ScheduledPromptConditioning] = schedules
        self.weight: float = weight


class MulticondLearnedConditioning:
    def __init__(self, shape, batch):
        self.shape: tuple = shape  # the shape field is needed to send this object to DDIM/PLMS
        self.batch: List[List[ComposableScheduledPromptConditioning]] = batch


def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
    """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
    For each prompt, the list is obtained by splitting the prompt using the AND separator.

    https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
    """

    res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)

    learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)

    res = []
    for indexes in res_indexes:
        res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])

    return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)


def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
    param = c[0][0].cond
    res = paddle.zeros(
        [
            len(c),
        ]
        + param.shape,
        dtype=param.dtype,
    )
    for i, cond_schedule in enumerate(c):
        target_index = 0
        for current, (end_at, cond) in enumerate(cond_schedule):
            if current_step <= end_at:
                target_index = current
                break
        res[i] = cond_schedule[target_index].cond

    return res


def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
    param = c.batch[0][0].schedules[0].cond

    tensors = []
    conds_list = []

    for batch_no, composable_prompts in enumerate(c.batch):
        conds_for_batch = []

        for cond_index, composable_prompt in enumerate(composable_prompts):
            target_index = 0
            for current, (end_at, cond) in enumerate(composable_prompt.schedules):
                if current_step <= end_at:
                    target_index = current
                    break

            conds_for_batch.append((len(tensors), composable_prompt.weight))
            tensors.append(composable_prompt.schedules[target_index].cond)

        conds_list.append(conds_for_batch)

    # if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
    # and won't be able to torch.stack them. So this fixes that.
    token_count = max([x.shape[0] for x in tensors])
    for i in range(len(tensors)):
        if tensors[i].shape[0] != token_count:
            last_vector = tensors[i][-1:]
            last_vector_repeated = last_vector.tile([token_count - tensors[i].shape[0], 1])
            tensors[i] = paddle.concat([tensors[i], last_vector_repeated], axis=0)

    return conds_list, paddle.stack(tensors).cast(dtype=param.dtype)


re_attention = re.compile(
    r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
    re.X,
)

re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)


def parse_prompt_attention(text):
    """
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \( - literal character '('
      \[ - literal character '['
      \) - literal character ')'
      \] - literal character ']'
      \\ - literal character '\'
      anything else - just text

    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\(literal\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            parts = re.split(re_break, text)
            for i, part in enumerate(parts):
                if i > 0:
                    res.append(["BREAK", -1])
                res.append([part, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


# sd_hijack.py


class StableDiffusionModelHijack:
    fixes = None
    comments = []
    layers = None
    circular_enabled = False

    def __init__(self, clip_model, embeddings_dir=None, CLIP_stop_at_last_layers=-1):
        model_embeddings = clip_model.text_encoder.text_model
        model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
        clip_model = FrozenCLIPEmbedderWithCustomWords(
            clip_model, self, CLIP_stop_at_last_layers=CLIP_stop_at_last_layers
        )

        self.embedding_db = EmbeddingDatabase(clip_model)
        self.embedding_db.add_embedding_dir(embeddings_dir)

        # hack this!
        self.clip = clip_model

        def flatten(el):
            flattened = [flatten(children) for children in el.children()]
            res = [el]
            for c in flattened:
                res += c
            return res

        self.layers = flatten(clip_model)

    def clear_comments(self):
        self.comments = []

    def get_prompt_lengths(self, text):
        _, token_count = self.clip.process_texts([text])

        return token_count, self.clip.get_target_prompt_token_count(token_count)


class EmbeddingsWithFixes(nn.Layer):
    def __init__(self, wrapped, embeddings):
        super().__init__()
        self.wrapped = wrapped
        self.embeddings = embeddings

    def forward(self, input_ids):
        batch_fixes = self.embeddings.fixes
        self.embeddings.fixes = None

        inputs_embeds = self.wrapped(input_ids)

        if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
            return inputs_embeds

        vecs = []
        for fixes, tensor in zip(batch_fixes, inputs_embeds):
            for offset, embedding in fixes:
                emb = embedding.vec.cast(self.wrapped.dtype)
                emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
                tensor = paddle.concat([tensor[0 : offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len :]])

            vecs.append(tensor)

        return paddle.stack(vecs)


# textual_inversion.py

import os
import sys
import traceback


class Embedding:
    def __init__(self, vec, name, step=None):
        self.vec = vec
        self.name = name
        self.step = step
        self.shape = None
        self.vectors = 0
        self.cached_checksum = None
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None
        self.optimizer_state_dict = None
        self.filename = None

    def save(self, filename):
        embedding_data = {
            "string_to_token": {"*": 265},
            "string_to_param": {"*": self.vec},
            "name": self.name,
            "step": self.step,
            "sd_checkpoint": self.sd_checkpoint,
            "sd_checkpoint_name": self.sd_checkpoint_name,
        }

        paddle.save(embedding_data, filename)

    def checksum(self):
        if self.cached_checksum is not None:
            return self.cached_checksum

        def const_hash(a):
            r = 0
            for v in a:
                r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
            return r

        self.cached_checksum = f"{const_hash(self.vec.flatten() * 100) & 0xffff:04x}"
        return self.cached_checksum


class DirWithTextualInversionEmbeddings:
    def __init__(self, path):
        self.path = path
        self.mtime = None

    def has_changed(self):
        if not os.path.isdir(self.path):
            return False

        mt = os.path.getmtime(self.path)
        if self.mtime is None or mt > self.mtime:
            return True

    def update(self):
        if not os.path.isdir(self.path):
            return

        self.mtime = os.path.getmtime(self.path)


class EmbeddingDatabase:
    def __init__(self, clip):
        self.clip = clip
        self.ids_lookup = {}
        self.word_embeddings = {}
        self.skipped_embeddings = {}
        self.expected_shape = -1
        self.embedding_dirs = {}
        self.previously_displayed_embeddings = ()

    def add_embedding_dir(self, path):
        if path is not None and path not in self.embedding_dirs:
            self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)

    def clear_embedding_dirs(self):
        self.embedding_dirs.clear()

    def register_embedding(self, embedding, model):
        self.word_embeddings[embedding.name] = embedding

        ids = model.tokenize([embedding.name])[0]

        first_id = ids[0]
        if first_id not in self.ids_lookup:
            self.ids_lookup[first_id] = []

        self.ids_lookup[first_id] = sorted(
            self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True
        )

        return embedding

    def get_expected_shape(self):
        vec = self.clip.encode_embedding_init_text(",", 1)
        return vec.shape[1]

    def load_from_file(self, path, filename):
        name, ext = os.path.splitext(filename)
        ext = ext.upper()

        if ext in [".PNG", ".WEBP", ".JXL", ".AVIF"]:
            _, second_ext = os.path.splitext(name)
            if second_ext.upper() == ".PREVIEW":
                return

            embed_image = Image.open(path)
            if hasattr(embed_image, "text") and "sd-ti-embedding" in embed_image.text:
                data = embedding_from_b64(embed_image.text["sd-ti-embedding"])
                name = data.get("name", name)
            else:
                data = extract_image_data_embed(embed_image)
                if data:
                    name = data.get("name", name)
                else:
                    # if data is None, means this is not an embeding, just a preview image
                    return
        elif ext in [".BIN", ".PT"]:
            data = torch_load(path)
        elif ext in [".SAFETENSORS"]:
            data = safetensors_load(path)
        else:
            return

        # textual inversion embeddings
        if "string_to_param" in data:
            param_dict = data["string_to_param"]
            if hasattr(param_dict, "_parameters"):
                param_dict = getattr(param_dict, "_parameters")
            assert len(param_dict) == 1, "embedding file has multiple terms in it"
            emb = next(iter(param_dict.items()))[1]
        # diffuser concepts
        elif type(data) == dict and type(next(iter(data.values()))) == paddle.Tensor:
            assert len(data.keys()) == 1, "embedding file has multiple terms in it"

            emb = next(iter(data.values()))
            if len(emb.shape) == 1:
                emb = emb.unsqueeze(0)
        else:
            raise Exception(
                f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept."
            )

        with paddle.no_grad():
            if hasattr(emb, "detach"):
                emb = emb.detach()
            if hasattr(emb, "cpu"):
                emb = emb.cpu()
            if hasattr(emb, "numpy"):
                emb = emb.numpy()
            emb = paddle.to_tensor(emb)
            vec = emb.detach().cast(paddle.float32)
        embedding = Embedding(vec, name)
        embedding.step = data.get("step", None)
        embedding.sd_checkpoint = data.get("sd_checkpoint", None)
        embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None)
        embedding.vectors = vec.shape[0]
        embedding.shape = vec.shape[-1]
        embedding.filename = path

        if self.expected_shape == -1 or self.expected_shape == embedding.shape:
            self.register_embedding(embedding, self.clip)
        else:
            self.skipped_embeddings[name] = embedding

    def load_from_dir(self, embdir):
        if not os.path.isdir(embdir.path):
            return

        for root, dirs, fns in os.walk(embdir.path, followlinks=True):
            for fn in fns:
                try:
                    fullfn = os.path.join(root, fn)

                    if os.stat(fullfn).st_size == 0:
                        continue

                    self.load_from_file(fullfn, fn)
                except Exception:
                    print(f"Error loading embedding {fn}:", file=sys.stderr)
                    print(traceback.format_exc(), file=sys.stderr)
                    continue

    def load_textual_inversion_embeddings(self, force_reload=False):
        if not force_reload:
            need_reload = False
            for path, embdir in self.embedding_dirs.items():
                if embdir.has_changed():
                    need_reload = True
                    break

            if not need_reload:
                return

        self.ids_lookup.clear()
        self.word_embeddings.clear()
        self.skipped_embeddings.clear()
        self.expected_shape = self.get_expected_shape()

        for path, embdir in self.embedding_dirs.items():
            self.load_from_dir(embdir)
            embdir.update()

        displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
        if self.previously_displayed_embeddings != displayed_embeddings:
            self.previously_displayed_embeddings = displayed_embeddings
            print(
                f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}"
            )
            if len(self.skipped_embeddings) > 0:
                print(
                    f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}"
                )

    def find_embedding_at_position(self, tokens, offset):
        token = tokens[offset]
        possible_matches = self.ids_lookup.get(token, None)

        if possible_matches is None:
            return None, None

        for ids, embedding in possible_matches:
            if tokens[offset : offset + len(ids)] == ids:
                return embedding, len(ids)

        return None, None