Delete webui_stable_diffusion_controlnet.py
Browse files- webui_stable_diffusion_controlnet.py +0 -1837
webui_stable_diffusion_controlnet.py
DELETED
@@ -1,1837 +0,0 @@
|
|
1 |
-
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
2 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
# modified from https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
17 |
-
# Here is the AGPL-3.0 license https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/LICENSE.txt
|
18 |
-
from ppdiffusers.utils import check_min_version
|
19 |
-
check_min_version("0.14.1")
|
20 |
-
|
21 |
-
import inspect
|
22 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
23 |
-
|
24 |
-
import paddle
|
25 |
-
import paddle.nn as nn
|
26 |
-
import PIL
|
27 |
-
import PIL.Image
|
28 |
-
|
29 |
-
from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
30 |
-
from ppdiffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
31 |
-
from ppdiffusers.pipelines.pipeline_utils import DiffusionPipeline
|
32 |
-
from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
33 |
-
from ppdiffusers.pipelines.stable_diffusion.safety_checker import (
|
34 |
-
StableDiffusionSafetyChecker,
|
35 |
-
)
|
36 |
-
from ppdiffusers.schedulers import KarrasDiffusionSchedulers
|
37 |
-
from ppdiffusers.utils import (
|
38 |
-
PIL_INTERPOLATION,
|
39 |
-
logging,
|
40 |
-
randn_tensor,
|
41 |
-
safetensors_load,
|
42 |
-
torch_load,
|
43 |
-
)
|
44 |
-
|
45 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
-
|
47 |
-
|
48 |
-
class WebUIStableDiffusionControlNetPipeline(DiffusionPipeline):
|
49 |
-
r"""
|
50 |
-
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
51 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
52 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
53 |
-
Args:
|
54 |
-
vae ([`AutoencoderKL`]):
|
55 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
56 |
-
text_encoder ([`CLIPTextModel`]):
|
57 |
-
Frozen text-encoder. Stable Diffusion uses the text portion of
|
58 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
59 |
-
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
60 |
-
tokenizer (`CLIPTokenizer`):
|
61 |
-
Tokenizer of class
|
62 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
63 |
-
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
64 |
-
controlnet ([`ControlNetModel`]):
|
65 |
-
Provides additional conditioning to the unet during the denoising process.
|
66 |
-
scheduler ([`SchedulerMixin`]):
|
67 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
68 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
69 |
-
safety_checker ([`StableDiffusionSafetyChecker`]):
|
70 |
-
Classification module that estimates whether generated images could be considered offensive or harmful.
|
71 |
-
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
72 |
-
feature_extractor ([`CLIPFeatureExtractor`]):
|
73 |
-
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
74 |
-
"""
|
75 |
-
_optional_components = ["safety_checker", "feature_extractor"]
|
76 |
-
enable_emphasis = True
|
77 |
-
comma_padding_backtrack = 20
|
78 |
-
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
vae: AutoencoderKL,
|
82 |
-
text_encoder: CLIPTextModel,
|
83 |
-
tokenizer: CLIPTokenizer,
|
84 |
-
unet: UNet2DConditionModel,
|
85 |
-
controlnet: ControlNetModel,
|
86 |
-
scheduler: KarrasDiffusionSchedulers,
|
87 |
-
safety_checker: StableDiffusionSafetyChecker,
|
88 |
-
feature_extractor: CLIPFeatureExtractor,
|
89 |
-
requires_safety_checker: bool = True,
|
90 |
-
):
|
91 |
-
super().__init__()
|
92 |
-
|
93 |
-
if safety_checker is None and requires_safety_checker:
|
94 |
-
logger.warning(
|
95 |
-
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
96 |
-
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
97 |
-
" results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
|
98 |
-
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
99 |
-
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
100 |
-
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
101 |
-
)
|
102 |
-
|
103 |
-
if safety_checker is not None and feature_extractor is None:
|
104 |
-
raise ValueError(
|
105 |
-
f"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
106 |
-
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
107 |
-
)
|
108 |
-
|
109 |
-
self.register_modules(
|
110 |
-
vae=vae,
|
111 |
-
text_encoder=text_encoder,
|
112 |
-
tokenizer=tokenizer,
|
113 |
-
unet=unet,
|
114 |
-
controlnet=controlnet,
|
115 |
-
scheduler=scheduler,
|
116 |
-
safety_checker=safety_checker,
|
117 |
-
feature_extractor=feature_extractor,
|
118 |
-
)
|
119 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
120 |
-
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
121 |
-
|
122 |
-
# custom data
|
123 |
-
clip_model = FrozenCLIPEmbedder(text_encoder, tokenizer)
|
124 |
-
self.sj = StableDiffusionModelHijack(clip_model)
|
125 |
-
self.orginal_scheduler_config = self.scheduler.config
|
126 |
-
self.supported_scheduler = [
|
127 |
-
"pndm",
|
128 |
-
"lms",
|
129 |
-
"euler",
|
130 |
-
"euler-ancestral",
|
131 |
-
"dpm-multi",
|
132 |
-
"dpm-single",
|
133 |
-
"unipc-multi",
|
134 |
-
"ddim",
|
135 |
-
"ddpm",
|
136 |
-
"deis-multi",
|
137 |
-
"heun",
|
138 |
-
"kdpm2-ancestral",
|
139 |
-
"kdpm2",
|
140 |
-
]
|
141 |
-
|
142 |
-
def add_ti_embedding_dir(self, embeddings_dir):
|
143 |
-
self.sj.embedding_db.add_embedding_dir(embeddings_dir)
|
144 |
-
self.sj.embedding_db.load_textual_inversion_embeddings()
|
145 |
-
|
146 |
-
def clear_ti_embedding(self):
|
147 |
-
self.sj.embedding_db.clear_embedding_dirs()
|
148 |
-
self.sj.embedding_db.load_textual_inversion_embeddings(True)
|
149 |
-
|
150 |
-
def switch_scheduler(self, scheduler_type="ddim"):
|
151 |
-
scheduler_type = scheduler_type.lower()
|
152 |
-
from ppdiffusers import (
|
153 |
-
DDIMScheduler,
|
154 |
-
DDPMScheduler,
|
155 |
-
DEISMultistepScheduler,
|
156 |
-
DPMSolverMultistepScheduler,
|
157 |
-
DPMSolverSinglestepScheduler,
|
158 |
-
EulerAncestralDiscreteScheduler,
|
159 |
-
EulerDiscreteScheduler,
|
160 |
-
HeunDiscreteScheduler,
|
161 |
-
KDPM2AncestralDiscreteScheduler,
|
162 |
-
KDPM2DiscreteScheduler,
|
163 |
-
LMSDiscreteScheduler,
|
164 |
-
PNDMScheduler,
|
165 |
-
UniPCMultistepScheduler,
|
166 |
-
)
|
167 |
-
|
168 |
-
if scheduler_type == "pndm":
|
169 |
-
scheduler = PNDMScheduler.from_config(self.orginal_scheduler_config, skip_prk_steps=True)
|
170 |
-
elif scheduler_type == "lms":
|
171 |
-
scheduler = LMSDiscreteScheduler.from_config(self.orginal_scheduler_config)
|
172 |
-
elif scheduler_type == "heun":
|
173 |
-
scheduler = HeunDiscreteScheduler.from_config(self.orginal_scheduler_config)
|
174 |
-
elif scheduler_type == "euler":
|
175 |
-
scheduler = EulerDiscreteScheduler.from_config(self.orginal_scheduler_config)
|
176 |
-
elif scheduler_type == "euler-ancestral":
|
177 |
-
scheduler = EulerAncestralDiscreteScheduler.from_config(self.orginal_scheduler_config)
|
178 |
-
elif scheduler_type == "dpm-multi":
|
179 |
-
scheduler = DPMSolverMultistepScheduler.from_config(self.orginal_scheduler_config)
|
180 |
-
elif scheduler_type == "dpm-single":
|
181 |
-
scheduler = DPMSolverSinglestepScheduler.from_config(self.orginal_scheduler_config)
|
182 |
-
elif scheduler_type == "kdpm2-ancestral":
|
183 |
-
scheduler = KDPM2AncestralDiscreteScheduler.from_config(self.orginal_scheduler_config)
|
184 |
-
elif scheduler_type == "kdpm2":
|
185 |
-
scheduler = KDPM2DiscreteScheduler.from_config(self.orginal_scheduler_config)
|
186 |
-
elif scheduler_type == "unipc-multi":
|
187 |
-
scheduler = UniPCMultistepScheduler.from_config(self.orginal_scheduler_config)
|
188 |
-
elif scheduler_type == "ddim":
|
189 |
-
scheduler = DDIMScheduler.from_config(
|
190 |
-
self.orginal_scheduler_config,
|
191 |
-
steps_offset=1,
|
192 |
-
clip_sample=False,
|
193 |
-
set_alpha_to_one=False,
|
194 |
-
)
|
195 |
-
elif scheduler_type == "ddpm":
|
196 |
-
scheduler = DDPMScheduler.from_config(
|
197 |
-
self.orginal_scheduler_config,
|
198 |
-
)
|
199 |
-
elif scheduler_type == "deis-multi":
|
200 |
-
scheduler = DEISMultistepScheduler.from_config(
|
201 |
-
self.orginal_scheduler_config,
|
202 |
-
)
|
203 |
-
else:
|
204 |
-
raise ValueError(
|
205 |
-
f"Scheduler of type {scheduler_type} doesn't exist! Please choose in {self.supported_scheduler}!"
|
206 |
-
)
|
207 |
-
self.scheduler = scheduler
|
208 |
-
|
209 |
-
@paddle.no_grad()
|
210 |
-
def _encode_prompt(
|
211 |
-
self,
|
212 |
-
prompt: str,
|
213 |
-
do_classifier_free_guidance: float = 7.5,
|
214 |
-
negative_prompt: str = None,
|
215 |
-
num_inference_steps: int = 50,
|
216 |
-
):
|
217 |
-
if do_classifier_free_guidance:
|
218 |
-
assert isinstance(negative_prompt, str)
|
219 |
-
negative_prompt = [negative_prompt]
|
220 |
-
uc = get_learned_conditioning(self.sj.clip, negative_prompt, num_inference_steps)
|
221 |
-
else:
|
222 |
-
uc = None
|
223 |
-
|
224 |
-
c = get_multicond_learned_conditioning(self.sj.clip, prompt, num_inference_steps)
|
225 |
-
return c, uc
|
226 |
-
|
227 |
-
def run_safety_checker(self, image, dtype):
|
228 |
-
if self.safety_checker is not None:
|
229 |
-
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
|
230 |
-
image, has_nsfw_concept = self.safety_checker(
|
231 |
-
images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
|
232 |
-
)
|
233 |
-
else:
|
234 |
-
has_nsfw_concept = None
|
235 |
-
return image, has_nsfw_concept
|
236 |
-
|
237 |
-
def decode_latents(self, latents):
|
238 |
-
latents = 1 / self.vae.config.scaling_factor * latents
|
239 |
-
image = self.vae.decode(latents).sample
|
240 |
-
image = (image / 2 + 0.5).clip(0, 1)
|
241 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
242 |
-
image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
|
243 |
-
return image
|
244 |
-
|
245 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
246 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
247 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
248 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
249 |
-
# and should be between [0, 1]
|
250 |
-
|
251 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
252 |
-
extra_step_kwargs = {}
|
253 |
-
if accepts_eta:
|
254 |
-
extra_step_kwargs["eta"] = eta
|
255 |
-
|
256 |
-
# check if the scheduler accepts generator
|
257 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
258 |
-
if accepts_generator:
|
259 |
-
extra_step_kwargs["generator"] = generator
|
260 |
-
return extra_step_kwargs
|
261 |
-
|
262 |
-
def check_inputs(
|
263 |
-
self,
|
264 |
-
prompt,
|
265 |
-
image,
|
266 |
-
height,
|
267 |
-
width,
|
268 |
-
callback_steps,
|
269 |
-
negative_prompt=None,
|
270 |
-
controlnet_conditioning_scale=1.0,
|
271 |
-
):
|
272 |
-
if height % 8 != 0 or width % 8 != 0:
|
273 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
274 |
-
|
275 |
-
if (callback_steps is None) or (
|
276 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
277 |
-
):
|
278 |
-
raise ValueError(
|
279 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
280 |
-
f" {type(callback_steps)}."
|
281 |
-
)
|
282 |
-
|
283 |
-
if prompt is not None and not isinstance(prompt, str):
|
284 |
-
raise ValueError(f"`prompt` has to be of type `str` but is {type(prompt)}")
|
285 |
-
|
286 |
-
if negative_prompt is not None and not isinstance(negative_prompt, str):
|
287 |
-
raise ValueError(f"`negative_prompt` has to be of type `str` but is {type(negative_prompt)}")
|
288 |
-
|
289 |
-
# Check `image`
|
290 |
-
|
291 |
-
if isinstance(self.controlnet, ControlNetModel):
|
292 |
-
self.check_image(image, prompt)
|
293 |
-
else:
|
294 |
-
assert False
|
295 |
-
|
296 |
-
# Check `controlnet_conditioning_scale`
|
297 |
-
if isinstance(self.controlnet, ControlNetModel):
|
298 |
-
if not isinstance(controlnet_conditioning_scale, (float, list, tuple)):
|
299 |
-
raise TypeError(
|
300 |
-
"For single controlnet: `controlnet_conditioning_scale` must be type `float, list(float) or tuple(float)`."
|
301 |
-
)
|
302 |
-
|
303 |
-
def check_image(self, image, prompt):
|
304 |
-
image_is_pil = isinstance(image, PIL.Image.Image)
|
305 |
-
image_is_tensor = isinstance(image, paddle.Tensor)
|
306 |
-
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
307 |
-
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], paddle.Tensor)
|
308 |
-
|
309 |
-
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
310 |
-
raise TypeError(
|
311 |
-
"image must be one of PIL image, paddle tensor, list of PIL images, or list of paddle tensors"
|
312 |
-
)
|
313 |
-
|
314 |
-
if image_is_pil:
|
315 |
-
image_batch_size = 1
|
316 |
-
elif image_is_tensor:
|
317 |
-
image_batch_size = image.shape[0]
|
318 |
-
elif image_is_pil_list:
|
319 |
-
image_batch_size = len(image)
|
320 |
-
elif image_is_tensor_list:
|
321 |
-
image_batch_size = len(image)
|
322 |
-
|
323 |
-
if prompt is not None and isinstance(prompt, str):
|
324 |
-
prompt_batch_size = 1
|
325 |
-
elif prompt is not None and isinstance(prompt, list):
|
326 |
-
prompt_batch_size = len(prompt)
|
327 |
-
|
328 |
-
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
329 |
-
raise ValueError(
|
330 |
-
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
331 |
-
)
|
332 |
-
|
333 |
-
def prepare_image(self, image, width, height, dtype):
|
334 |
-
if not isinstance(image, paddle.Tensor):
|
335 |
-
if isinstance(image, PIL.Image.Image):
|
336 |
-
image = [image]
|
337 |
-
|
338 |
-
if isinstance(image[0], PIL.Image.Image):
|
339 |
-
images = []
|
340 |
-
for image_ in image:
|
341 |
-
image_ = image_.convert("RGB")
|
342 |
-
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
343 |
-
image_ = np.array(image_)
|
344 |
-
image_ = image_[None, :]
|
345 |
-
images.append(image_)
|
346 |
-
|
347 |
-
image = np.concatenate(images, axis=0)
|
348 |
-
image = np.array(image).astype(np.float32) / 255.0
|
349 |
-
image = image.transpose(0, 3, 1, 2)
|
350 |
-
image = paddle.to_tensor(image)
|
351 |
-
elif isinstance(image[0], paddle.Tensor):
|
352 |
-
image = paddle.concat(image, axis=0)
|
353 |
-
|
354 |
-
image = image.cast(dtype)
|
355 |
-
return image
|
356 |
-
|
357 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
|
358 |
-
shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
|
359 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
360 |
-
raise ValueError(
|
361 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
362 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
363 |
-
)
|
364 |
-
|
365 |
-
if latents is None:
|
366 |
-
latents = randn_tensor(shape, generator=generator, dtype=dtype)
|
367 |
-
|
368 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
369 |
-
latents = latents * self.scheduler.init_noise_sigma
|
370 |
-
return latents
|
371 |
-
|
372 |
-
def _default_height_width(self, height, width, image):
|
373 |
-
while isinstance(image, list):
|
374 |
-
image = image[0]
|
375 |
-
|
376 |
-
if height is None:
|
377 |
-
if isinstance(image, PIL.Image.Image):
|
378 |
-
height = image.height
|
379 |
-
elif isinstance(image, paddle.Tensor):
|
380 |
-
height = image.shape[3]
|
381 |
-
|
382 |
-
height = (height // 8) * 8 # round down to nearest multiple of 8
|
383 |
-
|
384 |
-
if width is None:
|
385 |
-
if isinstance(image, PIL.Image.Image):
|
386 |
-
width = image.width
|
387 |
-
elif isinstance(image, paddle.Tensor):
|
388 |
-
width = image.shape[2]
|
389 |
-
|
390 |
-
width = (width // 8) * 8 # round down to nearest multiple of 8
|
391 |
-
|
392 |
-
return height, width
|
393 |
-
|
394 |
-
@paddle.no_grad()
|
395 |
-
def __call__(
|
396 |
-
self,
|
397 |
-
prompt: str = None,
|
398 |
-
image: PIL.Image.Image = None,
|
399 |
-
height: Optional[int] = None,
|
400 |
-
width: Optional[int] = None,
|
401 |
-
num_inference_steps: int = 50,
|
402 |
-
guidance_scale: float = 7.5,
|
403 |
-
negative_prompt: str = None,
|
404 |
-
eta: float = 0.0,
|
405 |
-
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
|
406 |
-
latents: Optional[paddle.Tensor] = None,
|
407 |
-
output_type: Optional[str] = "pil",
|
408 |
-
return_dict: bool = True,
|
409 |
-
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
|
410 |
-
callback_steps: Optional[int] = 1,
|
411 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
412 |
-
clip_skip: int = 0,
|
413 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
414 |
-
):
|
415 |
-
r"""
|
416 |
-
Function invoked when calling the pipeline for generation.
|
417 |
-
|
418 |
-
Args:
|
419 |
-
prompt (`str`, *optional*):
|
420 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
421 |
-
instead.
|
422 |
-
image (`paddle.Tensor`, `PIL.Image.Image`):
|
423 |
-
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
424 |
-
the type is specified as `paddle.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
425 |
-
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
426 |
-
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
427 |
-
specified in init, images must be passed as a list such that each element of the list can be correctly
|
428 |
-
batched for input to a single controlnet.
|
429 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
430 |
-
The height in pixels of the generated image.
|
431 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
432 |
-
The width in pixels of the generated image.
|
433 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
434 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
435 |
-
expense of slower inference.
|
436 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
437 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
438 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
439 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
440 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
441 |
-
usually at the expense of lower image quality.
|
442 |
-
negative_prompt (`str`, *optional*):
|
443 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
444 |
-
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
445 |
-
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
446 |
-
eta (`float`, *optional*, defaults to 0.0):
|
447 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
448 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
449 |
-
generator (`paddle.Generator` or `List[paddle.Generator]`, *optional*):
|
450 |
-
One or a list of paddle generator(s) to make generation deterministic.
|
451 |
-
latents (`paddle.Tensor`, *optional*):
|
452 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
453 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
454 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
455 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
456 |
-
The output format of the generate image. Choose between
|
457 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
458 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
459 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
460 |
-
plain tuple.
|
461 |
-
callback (`Callable`, *optional*):
|
462 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
463 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
|
464 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
465 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
466 |
-
called at every step.
|
467 |
-
cross_attention_kwargs (`dict`, *optional*):
|
468 |
-
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
469 |
-
`self.processor` in
|
470 |
-
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
471 |
-
clip_skip (`int`, *optional*, defaults to 0):
|
472 |
-
CLIP_stop_at_last_layers, if clip_skip < 1, we will use the last_hidden_state from text_encoder.
|
473 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
474 |
-
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
475 |
-
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
476 |
-
corresponding scale as a list.
|
477 |
-
Examples:
|
478 |
-
|
479 |
-
Returns:
|
480 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
481 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
482 |
-
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
483 |
-
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
484 |
-
(nsfw) content, according to the `safety_checker`.
|
485 |
-
"""
|
486 |
-
# 0. Default height and width to unet
|
487 |
-
height, width = self._default_height_width(height, width, image)
|
488 |
-
|
489 |
-
# 1. Check inputs. Raise error if not correct
|
490 |
-
self.check_inputs(
|
491 |
-
prompt,
|
492 |
-
image,
|
493 |
-
height,
|
494 |
-
width,
|
495 |
-
callback_steps,
|
496 |
-
negative_prompt,
|
497 |
-
controlnet_conditioning_scale,
|
498 |
-
)
|
499 |
-
|
500 |
-
batch_size = 1
|
501 |
-
|
502 |
-
image = self.prepare_image(
|
503 |
-
image=image,
|
504 |
-
width=width,
|
505 |
-
height=height,
|
506 |
-
dtype=self.controlnet.dtype,
|
507 |
-
)
|
508 |
-
|
509 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
510 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
511 |
-
# corresponds to doing no classifier free guidance.
|
512 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
513 |
-
|
514 |
-
prompts, extra_network_data = parse_prompts([prompt])
|
515 |
-
|
516 |
-
self.sj.clip.CLIP_stop_at_last_layers = clip_skip
|
517 |
-
# 3. Encode input prompt
|
518 |
-
prompt_embeds, negative_prompt_embeds = self._encode_prompt(
|
519 |
-
prompts,
|
520 |
-
do_classifier_free_guidance,
|
521 |
-
negative_prompt,
|
522 |
-
num_inference_steps=num_inference_steps,
|
523 |
-
)
|
524 |
-
|
525 |
-
# 4. Prepare timesteps
|
526 |
-
self.scheduler.set_timesteps(num_inference_steps)
|
527 |
-
timesteps = self.scheduler.timesteps
|
528 |
-
|
529 |
-
# 5. Prepare latent variables
|
530 |
-
num_channels_latents = self.unet.in_channels
|
531 |
-
latents = self.prepare_latents(
|
532 |
-
batch_size,
|
533 |
-
num_channels_latents,
|
534 |
-
height,
|
535 |
-
width,
|
536 |
-
self.unet.dtype,
|
537 |
-
generator,
|
538 |
-
latents,
|
539 |
-
)
|
540 |
-
|
541 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
542 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
543 |
-
|
544 |
-
# 7. Denoising loop
|
545 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
546 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
547 |
-
for i, t in enumerate(timesteps):
|
548 |
-
step = i // self.scheduler.order
|
549 |
-
do_batch = False
|
550 |
-
conds_list, cond_tensor = reconstruct_multicond_batch(prompt_embeds, step)
|
551 |
-
try:
|
552 |
-
weight = conds_list[0][0][1]
|
553 |
-
except Exception:
|
554 |
-
weight = 1.0
|
555 |
-
if do_classifier_free_guidance:
|
556 |
-
uncond_tensor = reconstruct_cond_batch(negative_prompt_embeds, step)
|
557 |
-
do_batch = cond_tensor.shape[1] == uncond_tensor.shape[1]
|
558 |
-
|
559 |
-
# expand the latents if we are doing classifier free guidance
|
560 |
-
latent_model_input = paddle.concat([latents] * 2) if do_batch else latents
|
561 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
562 |
-
|
563 |
-
if do_batch:
|
564 |
-
encoder_hidden_states = paddle.concat([uncond_tensor, cond_tensor])
|
565 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
566 |
-
latent_model_input,
|
567 |
-
t,
|
568 |
-
encoder_hidden_states=encoder_hidden_states,
|
569 |
-
controlnet_cond=paddle.concat([image, image]),
|
570 |
-
conditioning_scale=controlnet_conditioning_scale,
|
571 |
-
return_dict=False,
|
572 |
-
)
|
573 |
-
noise_pred = self.unet(
|
574 |
-
latent_model_input,
|
575 |
-
t,
|
576 |
-
encoder_hidden_states=encoder_hidden_states,
|
577 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
578 |
-
down_block_additional_residuals=down_block_res_samples,
|
579 |
-
mid_block_additional_residual=mid_block_res_sample,
|
580 |
-
).sample
|
581 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
582 |
-
noise_pred = noise_pred_uncond + weight * guidance_scale * (noise_pred_text - noise_pred_uncond)
|
583 |
-
else:
|
584 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
585 |
-
latent_model_input,
|
586 |
-
t,
|
587 |
-
encoder_hidden_states=cond_tensor,
|
588 |
-
controlnet_cond=image,
|
589 |
-
conditioning_scale=controlnet_conditioning_scale,
|
590 |
-
return_dict=False,
|
591 |
-
)
|
592 |
-
noise_pred = self.unet(
|
593 |
-
latent_model_input,
|
594 |
-
t,
|
595 |
-
encoder_hidden_states=cond_tensor,
|
596 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
597 |
-
down_block_additional_residuals=down_block_res_samples,
|
598 |
-
mid_block_additional_residual=mid_block_res_sample,
|
599 |
-
).sample
|
600 |
-
|
601 |
-
if do_classifier_free_guidance:
|
602 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
603 |
-
latent_model_input,
|
604 |
-
t,
|
605 |
-
encoder_hidden_states=uncond_tensor,
|
606 |
-
controlnet_cond=image,
|
607 |
-
conditioning_scale=controlnet_conditioning_scale,
|
608 |
-
return_dict=False,
|
609 |
-
)
|
610 |
-
noise_pred_uncond = self.unet(
|
611 |
-
latent_model_input,
|
612 |
-
t,
|
613 |
-
encoder_hidden_states=uncond_tensor,
|
614 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
615 |
-
down_block_additional_residuals=down_block_res_samples,
|
616 |
-
mid_block_additional_residual=mid_block_res_sample,
|
617 |
-
).sample
|
618 |
-
noise_pred = noise_pred_uncond + weight * guidance_scale * (noise_pred - noise_pred_uncond)
|
619 |
-
|
620 |
-
# compute the previous noisy sample x_t -> x_t-1
|
621 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
622 |
-
|
623 |
-
# call the callback, if provided
|
624 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
625 |
-
progress_bar.update()
|
626 |
-
if callback is not None and i % callback_steps == 0:
|
627 |
-
callback(i, t, latents)
|
628 |
-
|
629 |
-
if output_type == "latent":
|
630 |
-
image = latents
|
631 |
-
has_nsfw_concept = None
|
632 |
-
elif output_type == "pil":
|
633 |
-
# 8. Post-processing
|
634 |
-
image = self.decode_latents(latents)
|
635 |
-
|
636 |
-
# 9. Run safety checker
|
637 |
-
image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype)
|
638 |
-
|
639 |
-
# 10. Convert to PIL
|
640 |
-
image = self.numpy_to_pil(image)
|
641 |
-
else:
|
642 |
-
# 8. Post-processing
|
643 |
-
image = self.decode_latents(latents)
|
644 |
-
|
645 |
-
# 9. Run safety checker
|
646 |
-
image, has_nsfw_concept = self.run_safety_checker(image, self.unet.dtype)
|
647 |
-
|
648 |
-
if not return_dict:
|
649 |
-
return (image, has_nsfw_concept)
|
650 |
-
|
651 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
652 |
-
|
653 |
-
|
654 |
-
# clip.py
|
655 |
-
import math
|
656 |
-
from collections import namedtuple
|
657 |
-
|
658 |
-
|
659 |
-
class PromptChunk:
|
660 |
-
"""
|
661 |
-
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
|
662 |
-
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
|
663 |
-
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
|
664 |
-
so just 75 tokens from prompt.
|
665 |
-
"""
|
666 |
-
|
667 |
-
def __init__(self):
|
668 |
-
self.tokens = []
|
669 |
-
self.multipliers = []
|
670 |
-
self.fixes = []
|
671 |
-
|
672 |
-
|
673 |
-
PromptChunkFix = namedtuple("PromptChunkFix", ["offset", "embedding"])
|
674 |
-
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
|
675 |
-
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
|
676 |
-
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
|
677 |
-
|
678 |
-
|
679 |
-
class FrozenCLIPEmbedder(nn.Layer):
|
680 |
-
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
681 |
-
|
682 |
-
LAYERS = ["last", "pooled", "hidden"]
|
683 |
-
|
684 |
-
def __init__(self, text_encoder, tokenizer, freeze=True, layer="last", layer_idx=None):
|
685 |
-
super().__init__()
|
686 |
-
assert layer in self.LAYERS
|
687 |
-
self.tokenizer = tokenizer
|
688 |
-
self.text_encoder = text_encoder
|
689 |
-
if freeze:
|
690 |
-
self.freeze()
|
691 |
-
self.layer = layer
|
692 |
-
self.layer_idx = layer_idx
|
693 |
-
if layer == "hidden":
|
694 |
-
assert layer_idx is not None
|
695 |
-
assert 0 <= abs(layer_idx) <= 12
|
696 |
-
|
697 |
-
def freeze(self):
|
698 |
-
self.text_encoder.eval()
|
699 |
-
for param in self.parameters():
|
700 |
-
param.stop_gradient = False
|
701 |
-
|
702 |
-
def forward(self, text):
|
703 |
-
batch_encoding = self.tokenizer(
|
704 |
-
text,
|
705 |
-
truncation=True,
|
706 |
-
max_length=self.tokenizer.model_max_length,
|
707 |
-
padding="max_length",
|
708 |
-
return_tensors="pd",
|
709 |
-
)
|
710 |
-
tokens = batch_encoding["input_ids"]
|
711 |
-
outputs = self.text_encoder(input_ids=tokens, output_hidden_states=self.layer == "hidden", return_dict=True)
|
712 |
-
if self.layer == "last":
|
713 |
-
z = outputs.last_hidden_state
|
714 |
-
elif self.layer == "pooled":
|
715 |
-
z = outputs.pooler_output[:, None, :]
|
716 |
-
else:
|
717 |
-
z = outputs.hidden_states[self.layer_idx]
|
718 |
-
return z
|
719 |
-
|
720 |
-
def encode(self, text):
|
721 |
-
return self(text)
|
722 |
-
|
723 |
-
|
724 |
-
class FrozenCLIPEmbedderWithCustomWordsBase(nn.Layer):
|
725 |
-
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
|
726 |
-
have unlimited prompt length and assign weights to tokens in prompt.
|
727 |
-
"""
|
728 |
-
|
729 |
-
def __init__(self, wrapped, hijack):
|
730 |
-
super().__init__()
|
731 |
-
|
732 |
-
self.wrapped = wrapped
|
733 |
-
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
|
734 |
-
depending on model."""
|
735 |
-
|
736 |
-
self.hijack = hijack
|
737 |
-
self.chunk_length = 75
|
738 |
-
|
739 |
-
def empty_chunk(self):
|
740 |
-
"""creates an empty PromptChunk and returns it"""
|
741 |
-
|
742 |
-
chunk = PromptChunk()
|
743 |
-
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
|
744 |
-
chunk.multipliers = [1.0] * (self.chunk_length + 2)
|
745 |
-
return chunk
|
746 |
-
|
747 |
-
def get_target_prompt_token_count(self, token_count):
|
748 |
-
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
|
749 |
-
|
750 |
-
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
|
751 |
-
|
752 |
-
def tokenize(self, texts):
|
753 |
-
"""Converts a batch of texts into a batch of token ids"""
|
754 |
-
|
755 |
-
raise NotImplementedError
|
756 |
-
|
757 |
-
def encode_with_text_encoder(self, tokens):
|
758 |
-
"""
|
759 |
-
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens;
|
760 |
-
All python lists with tokens are assumed to have same length, usually 77.
|
761 |
-
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
|
762 |
-
model - can be 768 and 1024.
|
763 |
-
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
|
764 |
-
"""
|
765 |
-
|
766 |
-
raise NotImplementedError
|
767 |
-
|
768 |
-
def encode_embedding_init_text(self, init_text, nvpt):
|
769 |
-
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
|
770 |
-
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
|
771 |
-
|
772 |
-
raise NotImplementedError
|
773 |
-
|
774 |
-
def tokenize_line(self, line):
|
775 |
-
"""
|
776 |
-
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
|
777 |
-
represent the prompt.
|
778 |
-
Returns the list and the total number of tokens in the prompt.
|
779 |
-
"""
|
780 |
-
|
781 |
-
if WebUIStableDiffusionControlNetPipeline.enable_emphasis:
|
782 |
-
parsed = parse_prompt_attention(line)
|
783 |
-
else:
|
784 |
-
parsed = [[line, 1.0]]
|
785 |
-
|
786 |
-
tokenized = self.tokenize([text for text, _ in parsed])
|
787 |
-
|
788 |
-
chunks = []
|
789 |
-
chunk = PromptChunk()
|
790 |
-
token_count = 0
|
791 |
-
last_comma = -1
|
792 |
-
|
793 |
-
def next_chunk(is_last=False):
|
794 |
-
"""puts current chunk into the list of results and produces the next one - empty;
|
795 |
-
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
|
796 |
-
nonlocal token_count
|
797 |
-
nonlocal last_comma
|
798 |
-
nonlocal chunk
|
799 |
-
|
800 |
-
if is_last:
|
801 |
-
token_count += len(chunk.tokens)
|
802 |
-
else:
|
803 |
-
token_count += self.chunk_length
|
804 |
-
|
805 |
-
to_add = self.chunk_length - len(chunk.tokens)
|
806 |
-
if to_add > 0:
|
807 |
-
chunk.tokens += [self.id_end] * to_add
|
808 |
-
chunk.multipliers += [1.0] * to_add
|
809 |
-
|
810 |
-
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
|
811 |
-
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
|
812 |
-
|
813 |
-
last_comma = -1
|
814 |
-
chunks.append(chunk)
|
815 |
-
chunk = PromptChunk()
|
816 |
-
|
817 |
-
for tokens, (text, weight) in zip(tokenized, parsed):
|
818 |
-
if text == "BREAK" and weight == -1:
|
819 |
-
next_chunk()
|
820 |
-
continue
|
821 |
-
|
822 |
-
position = 0
|
823 |
-
while position < len(tokens):
|
824 |
-
token = tokens[position]
|
825 |
-
|
826 |
-
if token == self.comma_token:
|
827 |
-
last_comma = len(chunk.tokens)
|
828 |
-
|
829 |
-
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
830 |
-
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
831 |
-
elif (
|
832 |
-
WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack != 0
|
833 |
-
and len(chunk.tokens) == self.chunk_length
|
834 |
-
and last_comma != -1
|
835 |
-
and len(chunk.tokens) - last_comma
|
836 |
-
<= WebUIStableDiffusionControlNetPipeline.comma_padding_backtrack
|
837 |
-
):
|
838 |
-
break_location = last_comma + 1
|
839 |
-
|
840 |
-
reloc_tokens = chunk.tokens[break_location:]
|
841 |
-
reloc_mults = chunk.multipliers[break_location:]
|
842 |
-
|
843 |
-
chunk.tokens = chunk.tokens[:break_location]
|
844 |
-
chunk.multipliers = chunk.multipliers[:break_location]
|
845 |
-
|
846 |
-
next_chunk()
|
847 |
-
chunk.tokens = reloc_tokens
|
848 |
-
chunk.multipliers = reloc_mults
|
849 |
-
|
850 |
-
if len(chunk.tokens) == self.chunk_length:
|
851 |
-
next_chunk()
|
852 |
-
|
853 |
-
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(
|
854 |
-
tokens, position
|
855 |
-
)
|
856 |
-
if embedding is None:
|
857 |
-
chunk.tokens.append(token)
|
858 |
-
chunk.multipliers.append(weight)
|
859 |
-
position += 1
|
860 |
-
continue
|
861 |
-
|
862 |
-
emb_len = int(embedding.vec.shape[0])
|
863 |
-
if len(chunk.tokens) + emb_len > self.chunk_length:
|
864 |
-
next_chunk()
|
865 |
-
|
866 |
-
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
|
867 |
-
|
868 |
-
chunk.tokens += [0] * emb_len
|
869 |
-
chunk.multipliers += [weight] * emb_len
|
870 |
-
position += embedding_length_in_tokens
|
871 |
-
|
872 |
-
if len(chunk.tokens) > 0 or len(chunks) == 0:
|
873 |
-
next_chunk(is_last=True)
|
874 |
-
|
875 |
-
return chunks, token_count
|
876 |
-
|
877 |
-
def process_texts(self, texts):
|
878 |
-
"""
|
879 |
-
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
|
880 |
-
length, in tokens, of all texts.
|
881 |
-
"""
|
882 |
-
|
883 |
-
token_count = 0
|
884 |
-
|
885 |
-
cache = {}
|
886 |
-
batch_chunks = []
|
887 |
-
for line in texts:
|
888 |
-
if line in cache:
|
889 |
-
chunks = cache[line]
|
890 |
-
else:
|
891 |
-
chunks, current_token_count = self.tokenize_line(line)
|
892 |
-
token_count = max(current_token_count, token_count)
|
893 |
-
|
894 |
-
cache[line] = chunks
|
895 |
-
|
896 |
-
batch_chunks.append(chunks)
|
897 |
-
|
898 |
-
return batch_chunks, token_count
|
899 |
-
|
900 |
-
def forward(self, texts):
|
901 |
-
"""
|
902 |
-
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
|
903 |
-
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
|
904 |
-
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
|
905 |
-
An example shape returned by this function can be: (2, 77, 768).
|
906 |
-
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
907 |
-
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
908 |
-
"""
|
909 |
-
|
910 |
-
batch_chunks, token_count = self.process_texts(texts)
|
911 |
-
|
912 |
-
used_embeddings = {}
|
913 |
-
chunk_count = max([len(x) for x in batch_chunks])
|
914 |
-
|
915 |
-
zs = []
|
916 |
-
for i in range(chunk_count):
|
917 |
-
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
|
918 |
-
|
919 |
-
tokens = [x.tokens for x in batch_chunk]
|
920 |
-
multipliers = [x.multipliers for x in batch_chunk]
|
921 |
-
self.hijack.fixes = [x.fixes for x in batch_chunk]
|
922 |
-
|
923 |
-
for fixes in self.hijack.fixes:
|
924 |
-
for position, embedding in fixes:
|
925 |
-
used_embeddings[embedding.name] = embedding
|
926 |
-
|
927 |
-
z = self.process_tokens(tokens, multipliers)
|
928 |
-
zs.append(z)
|
929 |
-
|
930 |
-
if len(used_embeddings) > 0:
|
931 |
-
embeddings_list = ", ".join(
|
932 |
-
[f"{name} [{embedding.checksum()}]" for name, embedding in used_embeddings.items()]
|
933 |
-
)
|
934 |
-
self.hijack.comments.append(f"Used embeddings: {embeddings_list}")
|
935 |
-
|
936 |
-
return paddle.concat(zs, axis=1)
|
937 |
-
|
938 |
-
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
939 |
-
"""
|
940 |
-
sends one single prompt chunk to be encoded by transformers neural network.
|
941 |
-
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
|
942 |
-
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
|
943 |
-
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
|
944 |
-
corresponds to one token.
|
945 |
-
"""
|
946 |
-
tokens = paddle.to_tensor(remade_batch_tokens)
|
947 |
-
|
948 |
-
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
|
949 |
-
if self.id_end != self.id_pad:
|
950 |
-
for batch_pos in range(len(remade_batch_tokens)):
|
951 |
-
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
952 |
-
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad
|
953 |
-
|
954 |
-
z = self.encode_with_text_encoder(tokens)
|
955 |
-
|
956 |
-
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
957 |
-
batch_multipliers = paddle.to_tensor(batch_multipliers)
|
958 |
-
original_mean = z.mean()
|
959 |
-
z = z * batch_multipliers.reshape(
|
960 |
-
batch_multipliers.shape
|
961 |
-
+ [
|
962 |
-
1,
|
963 |
-
]
|
964 |
-
).expand(z.shape)
|
965 |
-
new_mean = z.mean()
|
966 |
-
z = z * (original_mean / new_mean)
|
967 |
-
|
968 |
-
return z
|
969 |
-
|
970 |
-
|
971 |
-
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
972 |
-
def __init__(self, wrapped, hijack, CLIP_stop_at_last_layers=-1):
|
973 |
-
super().__init__(wrapped, hijack)
|
974 |
-
self.CLIP_stop_at_last_layers = CLIP_stop_at_last_layers
|
975 |
-
self.tokenizer = wrapped.tokenizer
|
976 |
-
|
977 |
-
vocab = self.tokenizer.get_vocab()
|
978 |
-
|
979 |
-
self.comma_token = vocab.get(",</w>", None)
|
980 |
-
|
981 |
-
self.token_mults = {}
|
982 |
-
tokens_with_parens = [(k, v) for k, v in vocab.items() if "(" in k or ")" in k or "[" in k or "]" in k]
|
983 |
-
for text, ident in tokens_with_parens:
|
984 |
-
mult = 1.0
|
985 |
-
for c in text:
|
986 |
-
if c == "[":
|
987 |
-
mult /= 1.1
|
988 |
-
if c == "]":
|
989 |
-
mult *= 1.1
|
990 |
-
if c == "(":
|
991 |
-
mult *= 1.1
|
992 |
-
if c == ")":
|
993 |
-
mult /= 1.1
|
994 |
-
|
995 |
-
if mult != 1.0:
|
996 |
-
self.token_mults[ident] = mult
|
997 |
-
|
998 |
-
self.id_start = self.wrapped.tokenizer.bos_token_id
|
999 |
-
self.id_end = self.wrapped.tokenizer.eos_token_id
|
1000 |
-
self.id_pad = self.id_end
|
1001 |
-
|
1002 |
-
def tokenize(self, texts):
|
1003 |
-
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
|
1004 |
-
|
1005 |
-
return tokenized
|
1006 |
-
|
1007 |
-
def encode_with_text_encoder(self, tokens):
|
1008 |
-
output_hidden_states = self.CLIP_stop_at_last_layers > 1
|
1009 |
-
outputs = self.wrapped.text_encoder(
|
1010 |
-
input_ids=tokens, output_hidden_states=output_hidden_states, return_dict=True
|
1011 |
-
)
|
1012 |
-
|
1013 |
-
if output_hidden_states:
|
1014 |
-
z = outputs.hidden_states[-self.CLIP_stop_at_last_layers]
|
1015 |
-
z = self.wrapped.text_encoder.text_model.ln_final(z)
|
1016 |
-
else:
|
1017 |
-
z = outputs.last_hidden_state
|
1018 |
-
|
1019 |
-
return z
|
1020 |
-
|
1021 |
-
def encode_embedding_init_text(self, init_text, nvpt):
|
1022 |
-
embedding_layer = self.wrapped.text_encoder.text_model
|
1023 |
-
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pd", add_special_tokens=False)[
|
1024 |
-
"input_ids"
|
1025 |
-
]
|
1026 |
-
embedded = embedding_layer.token_embedding.wrapped(ids).squeeze(0)
|
1027 |
-
|
1028 |
-
return embedded
|
1029 |
-
|
1030 |
-
|
1031 |
-
# extra_networks.py
|
1032 |
-
import re
|
1033 |
-
from collections import defaultdict
|
1034 |
-
|
1035 |
-
|
1036 |
-
class ExtraNetworkParams:
|
1037 |
-
def __init__(self, items=None):
|
1038 |
-
self.items = items or []
|
1039 |
-
|
1040 |
-
|
1041 |
-
re_extra_net = re.compile(r"<(\w+):([^>]+)>")
|
1042 |
-
|
1043 |
-
|
1044 |
-
def parse_prompt(prompt):
|
1045 |
-
res = defaultdict(list)
|
1046 |
-
|
1047 |
-
def found(m):
|
1048 |
-
name = m.group(1)
|
1049 |
-
args = m.group(2)
|
1050 |
-
|
1051 |
-
res[name].append(ExtraNetworkParams(items=args.split(":")))
|
1052 |
-
|
1053 |
-
return ""
|
1054 |
-
|
1055 |
-
prompt = re.sub(re_extra_net, found, prompt)
|
1056 |
-
|
1057 |
-
return prompt, res
|
1058 |
-
|
1059 |
-
|
1060 |
-
def parse_prompts(prompts):
|
1061 |
-
res = []
|
1062 |
-
extra_data = None
|
1063 |
-
|
1064 |
-
for prompt in prompts:
|
1065 |
-
updated_prompt, parsed_extra_data = parse_prompt(prompt)
|
1066 |
-
|
1067 |
-
if extra_data is None:
|
1068 |
-
extra_data = parsed_extra_data
|
1069 |
-
|
1070 |
-
res.append(updated_prompt)
|
1071 |
-
|
1072 |
-
return res, extra_data
|
1073 |
-
|
1074 |
-
|
1075 |
-
# image_embeddings.py
|
1076 |
-
|
1077 |
-
import base64
|
1078 |
-
import json
|
1079 |
-
import zlib
|
1080 |
-
|
1081 |
-
import numpy as np
|
1082 |
-
from PIL import Image
|
1083 |
-
|
1084 |
-
|
1085 |
-
class EmbeddingDecoder(json.JSONDecoder):
|
1086 |
-
def __init__(self, *args, **kwargs):
|
1087 |
-
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
|
1088 |
-
|
1089 |
-
def object_hook(self, d):
|
1090 |
-
if "TORCHTENSOR" in d:
|
1091 |
-
return paddle.to_tensor(np.array(d["TORCHTENSOR"]))
|
1092 |
-
return d
|
1093 |
-
|
1094 |
-
|
1095 |
-
def embedding_from_b64(data):
|
1096 |
-
d = base64.b64decode(data)
|
1097 |
-
return json.loads(d, cls=EmbeddingDecoder)
|
1098 |
-
|
1099 |
-
|
1100 |
-
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
1101 |
-
while True:
|
1102 |
-
seed = (a * seed + c) % m
|
1103 |
-
yield seed % 255
|
1104 |
-
|
1105 |
-
|
1106 |
-
def xor_block(block):
|
1107 |
-
g = lcg()
|
1108 |
-
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
1109 |
-
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
1110 |
-
|
1111 |
-
|
1112 |
-
def crop_black(img, tol=0):
|
1113 |
-
mask = (img > tol).all(2)
|
1114 |
-
mask0, mask1 = mask.any(0), mask.any(1)
|
1115 |
-
col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax()
|
1116 |
-
row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax()
|
1117 |
-
return img[row_start:row_end, col_start:col_end]
|
1118 |
-
|
1119 |
-
|
1120 |
-
def extract_image_data_embed(image):
|
1121 |
-
d = 3
|
1122 |
-
outarr = (
|
1123 |
-
crop_black(np.array(image.convert("RGB").getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8))
|
1124 |
-
& 0x0F
|
1125 |
-
)
|
1126 |
-
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
1127 |
-
if black_cols[0].shape[0] < 2:
|
1128 |
-
print("No Image data blocks found.")
|
1129 |
-
return None
|
1130 |
-
|
1131 |
-
data_block_lower = outarr[:, : black_cols[0].min(), :].astype(np.uint8)
|
1132 |
-
data_block_upper = outarr[:, black_cols[0].max() + 1 :, :].astype(np.uint8)
|
1133 |
-
|
1134 |
-
data_block_lower = xor_block(data_block_lower)
|
1135 |
-
data_block_upper = xor_block(data_block_upper)
|
1136 |
-
|
1137 |
-
data_block = (data_block_upper << 4) | (data_block_lower)
|
1138 |
-
data_block = data_block.flatten().tobytes()
|
1139 |
-
|
1140 |
-
data = zlib.decompress(data_block)
|
1141 |
-
return json.loads(data, cls=EmbeddingDecoder)
|
1142 |
-
|
1143 |
-
|
1144 |
-
# prompt_parser.py
|
1145 |
-
import re
|
1146 |
-
from collections import namedtuple
|
1147 |
-
from typing import List
|
1148 |
-
|
1149 |
-
import lark
|
1150 |
-
|
1151 |
-
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
1152 |
-
# will be represented with prompt_schedule like this (assuming steps=100):
|
1153 |
-
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
1154 |
-
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
|
1155 |
-
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
|
1156 |
-
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
1157 |
-
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
1158 |
-
|
1159 |
-
schedule_parser = lark.Lark(
|
1160 |
-
r"""
|
1161 |
-
!start: (prompt | /[][():]/+)*
|
1162 |
-
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
|
1163 |
-
!emphasized: "(" prompt ")"
|
1164 |
-
| "(" prompt ":" prompt ")"
|
1165 |
-
| "[" prompt "]"
|
1166 |
-
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
1167 |
-
alternate: "[" prompt ("|" prompt)+ "]"
|
1168 |
-
WHITESPACE: /\s+/
|
1169 |
-
plain: /([^\\\[\]():|]|\\.)+/
|
1170 |
-
%import common.SIGNED_NUMBER -> NUMBER
|
1171 |
-
"""
|
1172 |
-
)
|
1173 |
-
|
1174 |
-
|
1175 |
-
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
1176 |
-
"""
|
1177 |
-
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
|
1178 |
-
>>> g("test")
|
1179 |
-
[[10, 'test']]
|
1180 |
-
>>> g("a [b:3]")
|
1181 |
-
[[3, 'a '], [10, 'a b']]
|
1182 |
-
>>> g("a [b: 3]")
|
1183 |
-
[[3, 'a '], [10, 'a b']]
|
1184 |
-
>>> g("a [[[b]]:2]")
|
1185 |
-
[[2, 'a '], [10, 'a [[b]]']]
|
1186 |
-
>>> g("[(a:2):3]")
|
1187 |
-
[[3, ''], [10, '(a:2)']]
|
1188 |
-
>>> g("a [b : c : 1] d")
|
1189 |
-
[[1, 'a b d'], [10, 'a c d']]
|
1190 |
-
>>> g("a[b:[c:d:2]:1]e")
|
1191 |
-
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
|
1192 |
-
>>> g("a [unbalanced")
|
1193 |
-
[[10, 'a [unbalanced']]
|
1194 |
-
>>> g("a [b:.5] c")
|
1195 |
-
[[5, 'a c'], [10, 'a b c']]
|
1196 |
-
>>> g("a [{b|d{:.5] c") # not handling this right now
|
1197 |
-
[[5, 'a c'], [10, 'a {b|d{ c']]
|
1198 |
-
>>> g("((a][:b:c [d:3]")
|
1199 |
-
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
1200 |
-
>>> g("[a|(b:1.1)]")
|
1201 |
-
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
|
1202 |
-
"""
|
1203 |
-
|
1204 |
-
def collect_steps(steps, tree):
|
1205 |
-
l = [steps]
|
1206 |
-
|
1207 |
-
class CollectSteps(lark.Visitor):
|
1208 |
-
def scheduled(self, tree):
|
1209 |
-
tree.children[-1] = float(tree.children[-1])
|
1210 |
-
if tree.children[-1] < 1:
|
1211 |
-
tree.children[-1] *= steps
|
1212 |
-
tree.children[-1] = min(steps, int(tree.children[-1]))
|
1213 |
-
l.append(tree.children[-1])
|
1214 |
-
|
1215 |
-
def alternate(self, tree):
|
1216 |
-
l.extend(range(1, steps + 1))
|
1217 |
-
|
1218 |
-
CollectSteps().visit(tree)
|
1219 |
-
return sorted(set(l))
|
1220 |
-
|
1221 |
-
def at_step(step, tree):
|
1222 |
-
class AtStep(lark.Transformer):
|
1223 |
-
def scheduled(self, args):
|
1224 |
-
before, after, _, when = args
|
1225 |
-
yield before or () if step <= when else after
|
1226 |
-
|
1227 |
-
def alternate(self, args):
|
1228 |
-
yield next(args[(step - 1) % len(args)])
|
1229 |
-
|
1230 |
-
def start(self, args):
|
1231 |
-
def flatten(x):
|
1232 |
-
if type(x) == str:
|
1233 |
-
yield x
|
1234 |
-
else:
|
1235 |
-
for gen in x:
|
1236 |
-
yield from flatten(gen)
|
1237 |
-
|
1238 |
-
return "".join(flatten(args))
|
1239 |
-
|
1240 |
-
def plain(self, args):
|
1241 |
-
yield args[0].value
|
1242 |
-
|
1243 |
-
def __default__(self, data, children, meta):
|
1244 |
-
for child in children:
|
1245 |
-
yield child
|
1246 |
-
|
1247 |
-
return AtStep().transform(tree)
|
1248 |
-
|
1249 |
-
def get_schedule(prompt):
|
1250 |
-
try:
|
1251 |
-
tree = schedule_parser.parse(prompt)
|
1252 |
-
except lark.exceptions.LarkError:
|
1253 |
-
if 0:
|
1254 |
-
import traceback
|
1255 |
-
|
1256 |
-
traceback.print_exc()
|
1257 |
-
return [[steps, prompt]]
|
1258 |
-
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
1259 |
-
|
1260 |
-
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
1261 |
-
return [promptdict[prompt] for prompt in prompts]
|
1262 |
-
|
1263 |
-
|
1264 |
-
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
1265 |
-
|
1266 |
-
|
1267 |
-
def get_learned_conditioning(model, prompts, steps):
|
1268 |
-
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
|
1269 |
-
and the sampling step at which this condition is to be replaced by the next one.
|
1270 |
-
|
1271 |
-
Input:
|
1272 |
-
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
|
1273 |
-
|
1274 |
-
Output:
|
1275 |
-
[
|
1276 |
-
[
|
1277 |
-
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
|
1278 |
-
],
|
1279 |
-
[
|
1280 |
-
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
|
1281 |
-
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
|
1282 |
-
]
|
1283 |
-
]
|
1284 |
-
"""
|
1285 |
-
res = []
|
1286 |
-
|
1287 |
-
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
1288 |
-
cache = {}
|
1289 |
-
|
1290 |
-
for prompt, prompt_schedule in zip(prompts, prompt_schedules):
|
1291 |
-
|
1292 |
-
cached = cache.get(prompt, None)
|
1293 |
-
if cached is not None:
|
1294 |
-
res.append(cached)
|
1295 |
-
continue
|
1296 |
-
|
1297 |
-
texts = [x[1] for x in prompt_schedule]
|
1298 |
-
conds = model(texts)
|
1299 |
-
|
1300 |
-
cond_schedule = []
|
1301 |
-
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
1302 |
-
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
1303 |
-
|
1304 |
-
cache[prompt] = cond_schedule
|
1305 |
-
res.append(cond_schedule)
|
1306 |
-
|
1307 |
-
return res
|
1308 |
-
|
1309 |
-
|
1310 |
-
re_AND = re.compile(r"\bAND\b")
|
1311 |
-
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
1312 |
-
|
1313 |
-
|
1314 |
-
def get_multicond_prompt_list(prompts):
|
1315 |
-
res_indexes = []
|
1316 |
-
|
1317 |
-
prompt_flat_list = []
|
1318 |
-
prompt_indexes = {}
|
1319 |
-
|
1320 |
-
for prompt in prompts:
|
1321 |
-
subprompts = re_AND.split(prompt)
|
1322 |
-
|
1323 |
-
indexes = []
|
1324 |
-
for subprompt in subprompts:
|
1325 |
-
match = re_weight.search(subprompt)
|
1326 |
-
|
1327 |
-
text, weight = match.groups() if match is not None else (subprompt, 1.0)
|
1328 |
-
|
1329 |
-
weight = float(weight) if weight is not None else 1.0
|
1330 |
-
|
1331 |
-
index = prompt_indexes.get(text, None)
|
1332 |
-
if index is None:
|
1333 |
-
index = len(prompt_flat_list)
|
1334 |
-
prompt_flat_list.append(text)
|
1335 |
-
prompt_indexes[text] = index
|
1336 |
-
|
1337 |
-
indexes.append((index, weight))
|
1338 |
-
|
1339 |
-
res_indexes.append(indexes)
|
1340 |
-
|
1341 |
-
return res_indexes, prompt_flat_list, prompt_indexes
|
1342 |
-
|
1343 |
-
|
1344 |
-
class ComposableScheduledPromptConditioning:
|
1345 |
-
def __init__(self, schedules, weight=1.0):
|
1346 |
-
self.schedules: List[ScheduledPromptConditioning] = schedules
|
1347 |
-
self.weight: float = weight
|
1348 |
-
|
1349 |
-
|
1350 |
-
class MulticondLearnedConditioning:
|
1351 |
-
def __init__(self, shape, batch):
|
1352 |
-
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
1353 |
-
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
1354 |
-
|
1355 |
-
|
1356 |
-
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
1357 |
-
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
1358 |
-
For each prompt, the list is obtained by splitting the prompt using the AND separator.
|
1359 |
-
|
1360 |
-
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
|
1361 |
-
"""
|
1362 |
-
|
1363 |
-
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
|
1364 |
-
|
1365 |
-
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
|
1366 |
-
|
1367 |
-
res = []
|
1368 |
-
for indexes in res_indexes:
|
1369 |
-
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
|
1370 |
-
|
1371 |
-
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
1372 |
-
|
1373 |
-
|
1374 |
-
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
1375 |
-
param = c[0][0].cond
|
1376 |
-
res = paddle.zeros(
|
1377 |
-
[
|
1378 |
-
len(c),
|
1379 |
-
]
|
1380 |
-
+ param.shape,
|
1381 |
-
dtype=param.dtype,
|
1382 |
-
)
|
1383 |
-
for i, cond_schedule in enumerate(c):
|
1384 |
-
target_index = 0
|
1385 |
-
for current, (end_at, cond) in enumerate(cond_schedule):
|
1386 |
-
if current_step <= end_at:
|
1387 |
-
target_index = current
|
1388 |
-
break
|
1389 |
-
res[i] = cond_schedule[target_index].cond
|
1390 |
-
|
1391 |
-
return res
|
1392 |
-
|
1393 |
-
|
1394 |
-
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
1395 |
-
param = c.batch[0][0].schedules[0].cond
|
1396 |
-
|
1397 |
-
tensors = []
|
1398 |
-
conds_list = []
|
1399 |
-
|
1400 |
-
for batch_no, composable_prompts in enumerate(c.batch):
|
1401 |
-
conds_for_batch = []
|
1402 |
-
|
1403 |
-
for cond_index, composable_prompt in enumerate(composable_prompts):
|
1404 |
-
target_index = 0
|
1405 |
-
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
|
1406 |
-
if current_step <= end_at:
|
1407 |
-
target_index = current
|
1408 |
-
break
|
1409 |
-
|
1410 |
-
conds_for_batch.append((len(tensors), composable_prompt.weight))
|
1411 |
-
tensors.append(composable_prompt.schedules[target_index].cond)
|
1412 |
-
|
1413 |
-
conds_list.append(conds_for_batch)
|
1414 |
-
|
1415 |
-
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
|
1416 |
-
# and won't be able to torch.stack them. So this fixes that.
|
1417 |
-
token_count = max([x.shape[0] for x in tensors])
|
1418 |
-
for i in range(len(tensors)):
|
1419 |
-
if tensors[i].shape[0] != token_count:
|
1420 |
-
last_vector = tensors[i][-1:]
|
1421 |
-
last_vector_repeated = last_vector.tile([token_count - tensors[i].shape[0], 1])
|
1422 |
-
tensors[i] = paddle.concat([tensors[i], last_vector_repeated], axis=0)
|
1423 |
-
|
1424 |
-
return conds_list, paddle.stack(tensors).cast(dtype=param.dtype)
|
1425 |
-
|
1426 |
-
|
1427 |
-
re_attention = re.compile(
|
1428 |
-
r"""
|
1429 |
-
\\\(|
|
1430 |
-
\\\)|
|
1431 |
-
\\\[|
|
1432 |
-
\\]|
|
1433 |
-
\\\\|
|
1434 |
-
\\|
|
1435 |
-
\(|
|
1436 |
-
\[|
|
1437 |
-
:([+-]?[.\d]+)\)|
|
1438 |
-
\)|
|
1439 |
-
]|
|
1440 |
-
[^\\()\[\]:]+|
|
1441 |
-
:
|
1442 |
-
""",
|
1443 |
-
re.X,
|
1444 |
-
)
|
1445 |
-
|
1446 |
-
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
1447 |
-
|
1448 |
-
|
1449 |
-
def parse_prompt_attention(text):
|
1450 |
-
"""
|
1451 |
-
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
1452 |
-
Accepted tokens are:
|
1453 |
-
(abc) - increases attention to abc by a multiplier of 1.1
|
1454 |
-
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
1455 |
-
[abc] - decreases attention to abc by a multiplier of 1.1
|
1456 |
-
\( - literal character '('
|
1457 |
-
\[ - literal character '['
|
1458 |
-
\) - literal character ')'
|
1459 |
-
\] - literal character ']'
|
1460 |
-
\\ - literal character '\'
|
1461 |
-
anything else - just text
|
1462 |
-
|
1463 |
-
>>> parse_prompt_attention('normal text')
|
1464 |
-
[['normal text', 1.0]]
|
1465 |
-
>>> parse_prompt_attention('an (important) word')
|
1466 |
-
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
1467 |
-
>>> parse_prompt_attention('(unbalanced')
|
1468 |
-
[['unbalanced', 1.1]]
|
1469 |
-
>>> parse_prompt_attention('\(literal\]')
|
1470 |
-
[['(literal]', 1.0]]
|
1471 |
-
>>> parse_prompt_attention('(unnecessary)(parens)')
|
1472 |
-
[['unnecessaryparens', 1.1]]
|
1473 |
-
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
1474 |
-
[['a ', 1.0],
|
1475 |
-
['house', 1.5730000000000004],
|
1476 |
-
[' ', 1.1],
|
1477 |
-
['on', 1.0],
|
1478 |
-
[' a ', 1.1],
|
1479 |
-
['hill', 0.55],
|
1480 |
-
[', sun, ', 1.1],
|
1481 |
-
['sky', 1.4641000000000006],
|
1482 |
-
['.', 1.1]]
|
1483 |
-
"""
|
1484 |
-
|
1485 |
-
res = []
|
1486 |
-
round_brackets = []
|
1487 |
-
square_brackets = []
|
1488 |
-
|
1489 |
-
round_bracket_multiplier = 1.1
|
1490 |
-
square_bracket_multiplier = 1 / 1.1
|
1491 |
-
|
1492 |
-
def multiply_range(start_position, multiplier):
|
1493 |
-
for p in range(start_position, len(res)):
|
1494 |
-
res[p][1] *= multiplier
|
1495 |
-
|
1496 |
-
for m in re_attention.finditer(text):
|
1497 |
-
text = m.group(0)
|
1498 |
-
weight = m.group(1)
|
1499 |
-
|
1500 |
-
if text.startswith("\\"):
|
1501 |
-
res.append([text[1:], 1.0])
|
1502 |
-
elif text == "(":
|
1503 |
-
round_brackets.append(len(res))
|
1504 |
-
elif text == "[":
|
1505 |
-
square_brackets.append(len(res))
|
1506 |
-
elif weight is not None and len(round_brackets) > 0:
|
1507 |
-
multiply_range(round_brackets.pop(), float(weight))
|
1508 |
-
elif text == ")" and len(round_brackets) > 0:
|
1509 |
-
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
1510 |
-
elif text == "]" and len(square_brackets) > 0:
|
1511 |
-
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
1512 |
-
else:
|
1513 |
-
parts = re.split(re_break, text)
|
1514 |
-
for i, part in enumerate(parts):
|
1515 |
-
if i > 0:
|
1516 |
-
res.append(["BREAK", -1])
|
1517 |
-
res.append([part, 1.0])
|
1518 |
-
|
1519 |
-
for pos in round_brackets:
|
1520 |
-
multiply_range(pos, round_bracket_multiplier)
|
1521 |
-
|
1522 |
-
for pos in square_brackets:
|
1523 |
-
multiply_range(pos, square_bracket_multiplier)
|
1524 |
-
|
1525 |
-
if len(res) == 0:
|
1526 |
-
res = [["", 1.0]]
|
1527 |
-
|
1528 |
-
# merge runs of identical weights
|
1529 |
-
i = 0
|
1530 |
-
while i + 1 < len(res):
|
1531 |
-
if res[i][1] == res[i + 1][1]:
|
1532 |
-
res[i][0] += res[i + 1][0]
|
1533 |
-
res.pop(i + 1)
|
1534 |
-
else:
|
1535 |
-
i += 1
|
1536 |
-
|
1537 |
-
return res
|
1538 |
-
|
1539 |
-
|
1540 |
-
# sd_hijack.py
|
1541 |
-
|
1542 |
-
|
1543 |
-
class StableDiffusionModelHijack:
|
1544 |
-
fixes = None
|
1545 |
-
comments = []
|
1546 |
-
layers = None
|
1547 |
-
circular_enabled = False
|
1548 |
-
|
1549 |
-
def __init__(self, clip_model, embeddings_dir=None, CLIP_stop_at_last_layers=-1):
|
1550 |
-
model_embeddings = clip_model.text_encoder.text_model
|
1551 |
-
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
1552 |
-
clip_model = FrozenCLIPEmbedderWithCustomWords(
|
1553 |
-
clip_model, self, CLIP_stop_at_last_layers=CLIP_stop_at_last_layers
|
1554 |
-
)
|
1555 |
-
|
1556 |
-
self.embedding_db = EmbeddingDatabase(clip_model)
|
1557 |
-
self.embedding_db.add_embedding_dir(embeddings_dir)
|
1558 |
-
|
1559 |
-
# hack this!
|
1560 |
-
self.clip = clip_model
|
1561 |
-
|
1562 |
-
def flatten(el):
|
1563 |
-
flattened = [flatten(children) for children in el.children()]
|
1564 |
-
res = [el]
|
1565 |
-
for c in flattened:
|
1566 |
-
res += c
|
1567 |
-
return res
|
1568 |
-
|
1569 |
-
self.layers = flatten(clip_model)
|
1570 |
-
|
1571 |
-
def clear_comments(self):
|
1572 |
-
self.comments = []
|
1573 |
-
|
1574 |
-
def get_prompt_lengths(self, text):
|
1575 |
-
_, token_count = self.clip.process_texts([text])
|
1576 |
-
|
1577 |
-
return token_count, self.clip.get_target_prompt_token_count(token_count)
|
1578 |
-
|
1579 |
-
|
1580 |
-
class EmbeddingsWithFixes(nn.Layer):
|
1581 |
-
def __init__(self, wrapped, embeddings):
|
1582 |
-
super().__init__()
|
1583 |
-
self.wrapped = wrapped
|
1584 |
-
self.embeddings = embeddings
|
1585 |
-
|
1586 |
-
def forward(self, input_ids):
|
1587 |
-
batch_fixes = self.embeddings.fixes
|
1588 |
-
self.embeddings.fixes = None
|
1589 |
-
|
1590 |
-
inputs_embeds = self.wrapped(input_ids)
|
1591 |
-
|
1592 |
-
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
|
1593 |
-
return inputs_embeds
|
1594 |
-
|
1595 |
-
vecs = []
|
1596 |
-
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
1597 |
-
for offset, embedding in fixes:
|
1598 |
-
emb = embedding.vec.cast(self.wrapped.dtype)
|
1599 |
-
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
|
1600 |
-
tensor = paddle.concat([tensor[0 : offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len :]])
|
1601 |
-
|
1602 |
-
vecs.append(tensor)
|
1603 |
-
|
1604 |
-
return paddle.stack(vecs)
|
1605 |
-
|
1606 |
-
|
1607 |
-
# textual_inversion.py
|
1608 |
-
|
1609 |
-
import os
|
1610 |
-
import sys
|
1611 |
-
import traceback
|
1612 |
-
|
1613 |
-
|
1614 |
-
class Embedding:
|
1615 |
-
def __init__(self, vec, name, step=None):
|
1616 |
-
self.vec = vec
|
1617 |
-
self.name = name
|
1618 |
-
self.step = step
|
1619 |
-
self.shape = None
|
1620 |
-
self.vectors = 0
|
1621 |
-
self.cached_checksum = None
|
1622 |
-
self.sd_checkpoint = None
|
1623 |
-
self.sd_checkpoint_name = None
|
1624 |
-
self.optimizer_state_dict = None
|
1625 |
-
self.filename = None
|
1626 |
-
|
1627 |
-
def save(self, filename):
|
1628 |
-
embedding_data = {
|
1629 |
-
"string_to_token": {"*": 265},
|
1630 |
-
"string_to_param": {"*": self.vec},
|
1631 |
-
"name": self.name,
|
1632 |
-
"step": self.step,
|
1633 |
-
"sd_checkpoint": self.sd_checkpoint,
|
1634 |
-
"sd_checkpoint_name": self.sd_checkpoint_name,
|
1635 |
-
}
|
1636 |
-
|
1637 |
-
paddle.save(embedding_data, filename)
|
1638 |
-
|
1639 |
-
def checksum(self):
|
1640 |
-
if self.cached_checksum is not None:
|
1641 |
-
return self.cached_checksum
|
1642 |
-
|
1643 |
-
def const_hash(a):
|
1644 |
-
r = 0
|
1645 |
-
for v in a:
|
1646 |
-
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
1647 |
-
return r
|
1648 |
-
|
1649 |
-
self.cached_checksum = f"{const_hash(self.vec.flatten() * 100) & 0xffff:04x}"
|
1650 |
-
return self.cached_checksum
|
1651 |
-
|
1652 |
-
|
1653 |
-
class DirWithTextualInversionEmbeddings:
|
1654 |
-
def __init__(self, path):
|
1655 |
-
self.path = path
|
1656 |
-
self.mtime = None
|
1657 |
-
|
1658 |
-
def has_changed(self):
|
1659 |
-
if not os.path.isdir(self.path):
|
1660 |
-
return False
|
1661 |
-
|
1662 |
-
mt = os.path.getmtime(self.path)
|
1663 |
-
if self.mtime is None or mt > self.mtime:
|
1664 |
-
return True
|
1665 |
-
|
1666 |
-
def update(self):
|
1667 |
-
if not os.path.isdir(self.path):
|
1668 |
-
return
|
1669 |
-
|
1670 |
-
self.mtime = os.path.getmtime(self.path)
|
1671 |
-
|
1672 |
-
|
1673 |
-
class EmbeddingDatabase:
|
1674 |
-
def __init__(self, clip):
|
1675 |
-
self.clip = clip
|
1676 |
-
self.ids_lookup = {}
|
1677 |
-
self.word_embeddings = {}
|
1678 |
-
self.skipped_embeddings = {}
|
1679 |
-
self.expected_shape = -1
|
1680 |
-
self.embedding_dirs = {}
|
1681 |
-
self.previously_displayed_embeddings = ()
|
1682 |
-
|
1683 |
-
def add_embedding_dir(self, path):
|
1684 |
-
if path is not None:
|
1685 |
-
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
1686 |
-
|
1687 |
-
def clear_embedding_dirs(self):
|
1688 |
-
self.embedding_dirs.clear()
|
1689 |
-
|
1690 |
-
def register_embedding(self, embedding, model):
|
1691 |
-
self.word_embeddings[embedding.name] = embedding
|
1692 |
-
|
1693 |
-
ids = model.tokenize([embedding.name])[0]
|
1694 |
-
|
1695 |
-
first_id = ids[0]
|
1696 |
-
if first_id not in self.ids_lookup:
|
1697 |
-
self.ids_lookup[first_id] = []
|
1698 |
-
|
1699 |
-
self.ids_lookup[first_id] = sorted(
|
1700 |
-
self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True
|
1701 |
-
)
|
1702 |
-
|
1703 |
-
return embedding
|
1704 |
-
|
1705 |
-
def get_expected_shape(self):
|
1706 |
-
vec = self.clip.encode_embedding_init_text(",", 1)
|
1707 |
-
return vec.shape[1]
|
1708 |
-
|
1709 |
-
def load_from_file(self, path, filename):
|
1710 |
-
name, ext = os.path.splitext(filename)
|
1711 |
-
ext = ext.upper()
|
1712 |
-
|
1713 |
-
if ext in [".PNG", ".WEBP", ".JXL", ".AVIF"]:
|
1714 |
-
_, second_ext = os.path.splitext(name)
|
1715 |
-
if second_ext.upper() == ".PREVIEW":
|
1716 |
-
return
|
1717 |
-
|
1718 |
-
embed_image = Image.open(path)
|
1719 |
-
if hasattr(embed_image, "text") and "sd-ti-embedding" in embed_image.text:
|
1720 |
-
data = embedding_from_b64(embed_image.text["sd-ti-embedding"])
|
1721 |
-
name = data.get("name", name)
|
1722 |
-
else:
|
1723 |
-
data = extract_image_data_embed(embed_image)
|
1724 |
-
if data:
|
1725 |
-
name = data.get("name", name)
|
1726 |
-
else:
|
1727 |
-
# if data is None, means this is not an embeding, just a preview image
|
1728 |
-
return
|
1729 |
-
elif ext in [".BIN", ".PT"]:
|
1730 |
-
data = torch_load(path)
|
1731 |
-
elif ext in [".SAFETENSORS"]:
|
1732 |
-
data = safetensors_load(path)
|
1733 |
-
else:
|
1734 |
-
return
|
1735 |
-
|
1736 |
-
# textual inversion embeddings
|
1737 |
-
if "string_to_param" in data:
|
1738 |
-
param_dict = data["string_to_param"]
|
1739 |
-
if hasattr(param_dict, "_parameters"):
|
1740 |
-
param_dict = getattr(param_dict, "_parameters")
|
1741 |
-
assert len(param_dict) == 1, "embedding file has multiple terms in it"
|
1742 |
-
emb = next(iter(param_dict.items()))[1]
|
1743 |
-
# diffuser concepts
|
1744 |
-
elif type(data) == dict and type(next(iter(data.values()))) == paddle.Tensor:
|
1745 |
-
assert len(data.keys()) == 1, "embedding file has multiple terms in it"
|
1746 |
-
|
1747 |
-
emb = next(iter(data.values()))
|
1748 |
-
if len(emb.shape) == 1:
|
1749 |
-
emb = emb.unsqueeze(0)
|
1750 |
-
else:
|
1751 |
-
raise Exception(
|
1752 |
-
f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept."
|
1753 |
-
)
|
1754 |
-
|
1755 |
-
with paddle.no_grad():
|
1756 |
-
if hasattr(emb, "detach"):
|
1757 |
-
emb = emb.detach()
|
1758 |
-
if hasattr(emb, "cpu"):
|
1759 |
-
emb = emb.cpu()
|
1760 |
-
if hasattr(emb, "numpy"):
|
1761 |
-
emb = emb.numpy()
|
1762 |
-
emb = paddle.to_tensor(emb)
|
1763 |
-
vec = emb.detach().cast(paddle.float32)
|
1764 |
-
embedding = Embedding(vec, name)
|
1765 |
-
embedding.step = data.get("step", None)
|
1766 |
-
embedding.sd_checkpoint = data.get("sd_checkpoint", None)
|
1767 |
-
embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None)
|
1768 |
-
embedding.vectors = vec.shape[0]
|
1769 |
-
embedding.shape = vec.shape[-1]
|
1770 |
-
embedding.filename = path
|
1771 |
-
|
1772 |
-
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
1773 |
-
self.register_embedding(embedding, self.clip)
|
1774 |
-
else:
|
1775 |
-
self.skipped_embeddings[name] = embedding
|
1776 |
-
|
1777 |
-
def load_from_dir(self, embdir):
|
1778 |
-
if not os.path.isdir(embdir.path):
|
1779 |
-
return
|
1780 |
-
|
1781 |
-
for root, dirs, fns in os.walk(embdir.path, followlinks=True):
|
1782 |
-
for fn in fns:
|
1783 |
-
try:
|
1784 |
-
fullfn = os.path.join(root, fn)
|
1785 |
-
|
1786 |
-
if os.stat(fullfn).st_size == 0:
|
1787 |
-
continue
|
1788 |
-
|
1789 |
-
self.load_from_file(fullfn, fn)
|
1790 |
-
except Exception:
|
1791 |
-
print(f"Error loading embedding {fn}:", file=sys.stderr)
|
1792 |
-
print(traceback.format_exc(), file=sys.stderr)
|
1793 |
-
continue
|
1794 |
-
|
1795 |
-
def load_textual_inversion_embeddings(self, force_reload=False):
|
1796 |
-
if not force_reload:
|
1797 |
-
need_reload = False
|
1798 |
-
for path, embdir in self.embedding_dirs.items():
|
1799 |
-
if embdir.has_changed():
|
1800 |
-
need_reload = True
|
1801 |
-
break
|
1802 |
-
|
1803 |
-
if not need_reload:
|
1804 |
-
return
|
1805 |
-
|
1806 |
-
self.ids_lookup.clear()
|
1807 |
-
self.word_embeddings.clear()
|
1808 |
-
self.skipped_embeddings.clear()
|
1809 |
-
self.expected_shape = self.get_expected_shape()
|
1810 |
-
|
1811 |
-
for path, embdir in self.embedding_dirs.items():
|
1812 |
-
self.load_from_dir(embdir)
|
1813 |
-
embdir.update()
|
1814 |
-
|
1815 |
-
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
|
1816 |
-
if self.previously_displayed_embeddings != displayed_embeddings:
|
1817 |
-
self.previously_displayed_embeddings = displayed_embeddings
|
1818 |
-
print(
|
1819 |
-
f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}"
|
1820 |
-
)
|
1821 |
-
if len(self.skipped_embeddings) > 0:
|
1822 |
-
print(
|
1823 |
-
f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}"
|
1824 |
-
)
|
1825 |
-
|
1826 |
-
def find_embedding_at_position(self, tokens, offset):
|
1827 |
-
token = tokens[offset]
|
1828 |
-
possible_matches = self.ids_lookup.get(token, None)
|
1829 |
-
|
1830 |
-
if possible_matches is None:
|
1831 |
-
return None, None
|
1832 |
-
|
1833 |
-
for ids, embedding in possible_matches:
|
1834 |
-
if tokens[offset : offset + len(ids)] == ids:
|
1835 |
-
return embedding, len(ids)
|
1836 |
-
|
1837 |
-
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|