File size: 2,057 Bytes
4b57d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- generated_from_trainer
model-index:
- name: vicuna-adv-robust-ul15-sft-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vicuna-adv-robust-ul15-sft-lora

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0104

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2291        | 0.57  | 14   | 1.1108          |
| 1.1237        | 1.59  | 29   | 1.0651          |
| 1.0918        | 2.6   | 44   | 1.0472          |
| 1.0711        | 3.57  | 58   | 1.0371          |
| 1.0498        | 4.58  | 73   | 1.0299          |
| 1.0255        | 5.6   | 88   | 1.0247          |
| 1.0131        | 6.57  | 102  | 1.0210          |
| 1.0047        | 7.58  | 117  | 1.0181          |
| 1.004         | 8.59  | 132  | 1.0160          |
| 1.0007        | 9.57  | 146  | 1.0145          |
| 0.9938        | 10.58 | 161  | 1.0132          |
| 0.9916        | 11.59 | 176  | 1.0122          |
| 0.9884        | 12.56 | 190  | 1.0115          |
| 0.9881        | 13.58 | 205  | 1.0109          |
| 0.9856        | 14.59 | 220  | 1.0104          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.14.6
- Tokenizers 0.14.1