--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - justpyschitry/autotrain-data-Wikipeida_Article_Classifier_by_Chap co2_eq_emissions: 19.2150872382377 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1022634731 - CO2 Emissions (in grams): 19.2150872382377 ## Validation Metrics - Loss: 0.44044896960258484 - Accuracy: 0.9149108589951378 - Macro F1: 0.9112823337353622 - Micro F1: 0.9149108589951378 - Weighted F1: 0.9148129605580173 - Macro Precision: 0.9142880779580832 - Micro Precision: 0.9149108589951378 - Weighted Precision: 0.9159535860210665 - Macro Recall: 0.910063875934768 - Micro Recall: 0.9149108589951378 - Weighted Recall: 0.9149108589951378 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634731 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634731", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634731", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```